Skip to main content

Design and Numerical Analysis of RNA Oscillator

  • Conference paper
Natural Computing

Part of the book series: Proceedings in Information and Communications Technology ((PICT,volume 1))

Abstract

In recent years, various types of DNA nanomachines driven by DNA hybridizations have been developed as one of remarkable applications of DNA computer for nanotechnology. Here, we propose an oscillator as a nanosystem to control the nanomachines. It was modeled after a circadian rhythm in life systems and utilized DNA/RNA and their molecular reactions. The molecular reactions were composed of nucleic-acid hybridization, RNA transcription, DNA extension, RNA degradation, and uracil-containing DNA degradation. Results of numerical analyses of rate equations for the reactions demonstrated that oscillatory condition of the system was decided by balance between RNA influx into the system and RNA degradation out of the system. The analytical results will provide much important information when the oscillator is constructed in in vitro experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M.: Science 266, 1021–1024 (1994)

    Google Scholar 

  2. Seeman, N.C.: Nature 421, 427–431 (2003)

    Google Scholar 

  3. Seeman, N.C., Lukeman, P.S.: Rep. Prog. Phys. 68, 237–270 (2005)

    Google Scholar 

  4. Bath, J., Turberfield, A.J.: Nat. Nanotechnol. 2, 275–284 (2007)

    Google Scholar 

  5. Simmel, F.C., Dittmer, W.U.: Small 1, 284–299 (2005)

    Google Scholar 

  6. Mao, C., Sun, W., Shen, Z., Seeman, N.C.: Nature 397, 144–146 (1999)

    Google Scholar 

  7. Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: Nature 406, 605–608 (2000)

    Google Scholar 

  8. Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: Nature 415, 62–65 (2002)

    Google Scholar 

  9. Shin, J.S., Pierce, N.A.: J. Am. Chem. Soc. 126, 10834–10835 (2004)

    Google Scholar 

  10. Tian, Y., Mao, C.: J. Am. Chem. Soc. 126, 11410–11411 (2004)

    Google Scholar 

  11. Sherman, W.B., Seeman, N.C.: Nano Lett. 4, 1203–1207 (2004)

    Google Scholar 

  12. Chen, Y., Mao, C.: J. Am. Chem. Soc. 126, 8626–8627 (2004)

    Google Scholar 

  13. Yin, P., Yan, H., Daniell, X.G., Turberfield, A.J., Reif, J.H.: Angew. Chem. Int. Ed. 43, 4906–4911 (2004)

    Google Scholar 

  14. Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: Angew. Chem. Int. Ed. 44, 2–5 (2005)

    Google Scholar 

  15. Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills Jr., A.P., Blakey, M.I., Simmel, F.C.: Phys. Rev. Lett. 90, 118102 (2003)

    Google Scholar 

  16. Seelig, G., Yurke, B., Winfree, E.: J. Am. Chem. Soc. 128, 12211–12220 (2006)

    Google Scholar 

  17. Murray, J.D.: Springer, New York (2002)

    Google Scholar 

  18. Fall, C.P., Marland, E.S., Wagner, J.M., Tyson, J.J.: Springer, New York (2002)

    Google Scholar 

  19. Martint, C.T., Coleman, J.E.: Biochemistry 26, 2690–2696 (1987)

    Google Scholar 

  20. Hirano, N., Haruki, M., Morikawa, M., Kanaya, S.: Biochemistry 39, 13285–13294 (2000)

    Google Scholar 

  21. Varshney, U., van de Sande, J.H.: Biochemistry 30, 4055–4061 (1991)

    Google Scholar 

  22. Dittmer, W.U., Simmel, F.C.: Nano Lett. 4, 689–691 (2004)

    Google Scholar 

  23. Dittmer, W.U., Kempter, S., Radler, J.O., Simmel, F.C.: Small 1, 709–712 (2005)

    Google Scholar 

  24. Elowitz, M.B., Leibler, S.: Nature 403, 335–338 (2000)

    Google Scholar 

  25. Fung, E., Wong, W.W., Suen, J.K., Bulter, T., Lee, S.G., Liao, J.C.: Nature 435, 118–122 (2005)

    Google Scholar 

  26. Atkinson, M.R., Savageau, M.A., Myers, J.T., Ninfa, A.J.: Cell 113, 597–607 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Tokyo

About this paper

Cite this paper

Takinoue, M., Kiga, D., Shohda, Ki., Suyama, A. (2009). Design and Numerical Analysis of RNA Oscillator. In: Suzuki, Y., Hagiya, M., Umeo, H., Adamatzky, A. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-88981-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-88981-6_18

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-88980-9

  • Online ISBN: 978-4-431-88981-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics