An Efficient Multiple Alignment Method for RNA Secondary Structures Including Pseudoknots

  • Shinnosuke Seki
  • Satoshi Kobayashi
Conference paper
Part of the Proceedings in Information and Communications Technology book series (PICT, volume 1)


Pseudoknots, one of the key components of RNA secondary structures, have been almost systematically intractable because of the difficulty in modeling them. Tree adjoining grammars have proved to be promising for this problem but the question of how to make TAG-based applications practical enough to analyze RNAs of thousands nucleotides remains open. This paper addresses this problem. It makes use of biological properties of pseudoknots, the scarcity and short-bp property. Experiments showed that our algorithm can align RNAs of the length up to about 2400 nucleotides with biologically meaningful outputs extremely fast on the standard workstation environment. An executable version of our implementation is available at


Edit Distance Alignment Algorithm Pairwise Alignment Pseudoknotted Structure Tree Adjoining Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Felden, B., et al.: Probing the structure of the Escherichia coli 10Sa RNA (tmRNA). RNA 3, 89–103 (1997)Google Scholar
  2. 2.
    Dost, B., et al.: Structural alignment of Pseudoknotted RNA. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 143–158. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Dowell, R.D., Eddy, S.R.: Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics 7, 400 (2006)CrossRefGoogle Scholar
  4. 4.
    Holmes, I., Rubin, G.M.: Pairwise RNA structure comparison with stochastic context-free grammars. Pacif. Symp. Biocomput. 7, 163–174 (2002)Google Scholar
  5. 5.
    Rivas, E., Eddy, S.R.: The language of RNA: a formal grammar that includes pseudoknots. Bioinformatics 16, 334–340 (1999)CrossRefGoogle Scholar
  6. 6.
    Sakakibara, Y.: Pair hidden Markov models on tree structures. Bioinformatics 19 (suppl.1), i232–i240 (2003)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. J. Comput. Syst. Sci. 10, 136–163 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Uemura, Y., et al.: Tree adjoining grammars for RNA structure prediction. Theor. Comput. Sci. 210, 277–303 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Matsui, H., Sato, K., Sakakibara, Y.: Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures. In: Proc. 2004 IEEE Comput. Syst. Bioinf. Conf. (CSB 2004), pp. 1–11 (2004)Google Scholar
  10. 10.
    Seki, S., Kobayashi, S.: A grammatical approach to the alignment of structure-annotated strings. IEICE Trans. Inf. & Syst. E88-D 12, 2727–2737 (2003)Google Scholar
  11. 11.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (2001)zbMATHGoogle Scholar
  12. 12.
    Jiang, T., Wang, L., Zhang, K.: Alignment of trees - an alternative to tree edit. Theor. Comput. Sci. 143, 137–148 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Reeder, J., Steffen, P., Giegerich, R.: PknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows. Nucleic Acids Res. 324, W320–W324 (2007)CrossRefGoogle Scholar
  14. 14.
    Shapiro, B.: An algorithm for comparing multiple RNA secondary structures. Comput. Applic. Biosci. 4(3), 387–393 (1988)Google Scholar
  15. 15.
    Cannone, J.J., et al.: The comparative RNA Web (CRW) Site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BioMed. Cent. Bioinf. 3(15) (2002),
  16. 16.
    Jiang, T., Wang, L., Zhang, K.: A general edit distance between RNA structures. In: Proc. 5th a. Int. Conf. Comput. Molec. Biol. (RECOMB 2001), pp. 211–220 (2001)Google Scholar
  17. 17.
    Feng, D.-F., Doolittle, R.F.: Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Molec. Evolution 25, 351–360 (1987)CrossRefGoogle Scholar
  18. 18.
    Höchsmann, M., Voss, B., Giegrich, R.: Pure multiple RNA secondary structure alignments: a progressive profile approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 1, 53–62 (2004)CrossRefGoogle Scholar
  19. 19.
    Griffiths-Jones, S., et al.: Rfam: annotating non-coding RNAs in complete genomes. Nucl. Acids Res. 33, D121–D124 (2005)CrossRefGoogle Scholar
  20. 20.
    Barton, G.J., Sternberg, M.J.E.: A strategy for the rapid multiple alignment of protein sequences. J. Molec. Biol. 198, 327–337 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Tokyo 2009

Authors and Affiliations

  • Shinnosuke Seki
    • 1
  • Satoshi Kobayashi
    • 2
  1. 1.Department of Computer ScienceUniversity of Western OntarioLondonCanada
  2. 2.Department of Computer ScienceThe University of Electro-CommunicationsTokyoJapan

Personalised recommendations