A Classification of Triplet Local Rules with Inverse Image Sequences

  • Tatsuro Sato
  • Kazumasa Honda
  • Hyen Yeal Lee
  • Yasuo Kawahara
Conference paper
Part of the Proceedings in Information and Communications Technology book series (PICT, volume 1)


In a general transition system the number of inverse images of a configuration by its global transition is often related with some characteristic behaviors (for example, the reversibility) of the system. This paper studies sequences of such numbers of inverse images, and gives a necessary and sufficient condition for the global transitions to be reversible, and finally we show how to determine the recursive formulas of inverse image sequences defined for triplet local rules by using de Bruijn subautomata.


Cellular Automaton Transition System Regular Expression Inverse Image Recursive Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Inokuchi, S., et al.: On reversible cellular automata with finite cell array. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 130–141. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Inui, N., et al.: Statistical properties of a quantum cellular automaton. Physical Review A 72, 032323Google Scholar
  3. 3.
    Shingai, R.: The maximum period realized in 1-D uniform neural networks. Trans. IECE, Japan E61, 804–808 (1978)Google Scholar
  4. 4.
    Wolfram, S.: Universality and complexity in cellular automata. Physica 10D, 1–35 (1984)MathSciNetGoogle Scholar

Copyright information

© Springer Tokyo 2009

Authors and Affiliations

  • Tatsuro Sato
    • 1
  • Kazumasa Honda
    • 3
  • Hyen Yeal Lee
    • 2
  • Yasuo Kawahara
    • 3
  1. 1.Oita National College of TechnologyOitaJapan
  2. 2.School of Electrical and Computer EngineeringPusan National UniversityBusanKorea
  3. 3.Department of InformaticsKyushu UniversityFukuokaJapan

Personalised recommendations