Monte Carlo Simulation in Lattice Ecosystem: Top-Predator Conservation and Population Uncertainty

  • Hiroyasu Nagata
  • Kei-ichi Tainaka
  • Nariyuki Nakagiri
  • Jin Yoshimura
Conference paper
Part of the Proceedings in Information and Communications Technology book series (PICT, volume 1)


The conservation of biodiversity is one of the most important problems in this century. Under human management, ecosystems suffer perturbations or disturbances. The investigation of perturbation experiments is essential to conserve species and habitat. We carry out Monte-Carlo simulations on finite-size lattices composed of species (n ≤ 4). The value of mortality rate m of top predator is altered to a higher or lower level and a fluctuation enhancement (FE) is explored. Here FE means an uncertainty in population dynamics. It is found for that FE is observed when m is decreased. Namely, when we protect the top predator, its population dynamics becomes very difficult to predict.


Monte Carlo simulation population uncertainty finite size lattice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tainaka, K.: Lattice model for the Lotka-Volterra system. J. Phys. Soc. Jpn. 57, 2588–2590 (1988)CrossRefGoogle Scholar
  2. 2.
    Tainaka, K.: Stationary pattern of vortices or strings in biological systems, lattice version of the Lotka-Volterra model. Phys. Rev. Lett. 63, 2688–2691 (1989)CrossRefGoogle Scholar
  3. 3.
    Paine, R.T.: Food web complexity and species diversity. The American Naturalist. 100, 65–75 (1966)CrossRefGoogle Scholar
  4. 4.
    Tilman, D., Downing, J.A.: Biodiversity and stability in grassland. Nature 367, 363–365 (1994)CrossRefGoogle Scholar
  5. 5.
    Caswell, H., Cohen, J.E.: Red, white and blue, environmental variance spectra and coexistence in metapopulations. J. Theor. Biol. 176, 301–316 (1995)CrossRefGoogle Scholar
  6. 6.
    Yodzis, P.: The indeterminacy of ecological interactions as perceived through perturbation experiments. Ecology 69, 508–515 (1988)CrossRefGoogle Scholar
  7. 7.
    Tainaka, K.: Intrinsic uncertainty in ecological catastrophe. J. Theor. Biol. 166, 91–99 (1994)CrossRefGoogle Scholar
  8. 8.
    Kubo, R., Matsuo, K., Kitahara, K.: Fluctuations and relaxation of macrovariables. J. Stat. Phys. 9, 51–96 (1973)CrossRefGoogle Scholar
  9. 9.
    Tsuchiya, Y., Horie, S.: Evolution process of the Williams domain in a nematic liquid crystal. J. Phys. Soc. Jpn. 54, 1–4 (1985)CrossRefGoogle Scholar
  10. 10.
    Tainaka, K., Hosiyama, M., Takeuchi, Y.: Dynamic process and variation in the contact process. Phys. Lett. A 272, 416–420 (2000)CrossRefGoogle Scholar
  11. 11.
    Itoh, Y., Tainaka, K.: Spatial Enhancement of Population Uncertainty in model ecosystems. J. Phys. Soc. Jpn. 73(2004), 53–59 (1994)CrossRefGoogle Scholar
  12. 12.
    Kobayashi, K., Tainaka, K.: Critical phenomena in cyclic ecosystems, parity law and self-structuring extinction pattern. J. Phys. Soc. Jpn. 66, 38–41 (1997)CrossRefGoogle Scholar
  13. 13.
    Harris, T.E.: Contact interaction on a lattice. Ann.Prob. 2, 969–988 (1974)zbMATHCrossRefGoogle Scholar
  14. 14.
    Tainaka, K., Fukazawa, S.: Spatial pattern in a chemical reaction system, prey and predator in the position-fixed limit. J. Phys. Soc. Jpn. 61, 1891–1894 (1992)CrossRefGoogle Scholar
  15. 15.
    Satulovsky, J.E., Tome, T.: Stochastic lattice gas model for a predator -prey system. Phys. Rev. E 49, 5073–5079 (1994)CrossRefGoogle Scholar
  16. 16.
    Sutherland, B.R., Jacobs, A.E.: Self-organization and scaling in a lattice prey-predator model. Complex Systems 8, 385–405 (1994)zbMATHGoogle Scholar
  17. 17.
    Hofbauer, J., Sigmund, K.: The theory of evolution and dynamical systems. Cambridge Univ. Press, Cambridge (1988)zbMATHGoogle Scholar
  18. 18.
    Takeuchi, Y.: Gloval dynamical properties of Lotka-Volterra systems. World Scientific, Singapore (1996)Google Scholar
  19. 19.
    Takeuchi, Y.: Private communication (2006)Google Scholar
  20. 20.
    May, R.M.: Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977)CrossRefGoogle Scholar
  21. 21.
    Krivan, V.: Optimal Foraging and Predator-Prey Dynamics. Theoretical Population Biology 49, 265–290 (1996)zbMATHCrossRefGoogle Scholar
  22. 22.
    McShea, W.J., Underwood, H.B., Rappole, J.H. (eds.): The science of overabundance deer ecology and population management. Smithsonian Institution Press, Washington (1997)Google Scholar
  23. 23.
    Cote, S.D., Thomas Rooney, P., Tremblay, J.P., Dussault, C., Walleret, D.M.: Ecological impacts of deer overabundance. Annual Review of Ecology, Evolution, and Systematics 35, 113–147 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Tokyo 2009

Authors and Affiliations

  • Hiroyasu Nagata
    • 1
  • Kei-ichi Tainaka
    • 1
  • Nariyuki Nakagiri
    • 2
  • Jin Yoshimura
    • 1
  1. 1.Graduate School of Science and TechnologyShizuoka UniversityHamamatsuJapan
  2. 2.School of Human Science and EnvironmentUniversity of HyogoHimejiJapan

Personalised recommendations