Molecular Communication: Simulation of Microtubule Topology

  • Michael J. Moore
  • Akihiro Enomoto
  • Tadashi Nakano
  • Atsushi Kayasuga
  • Hiroaki Kojima
  • Hitoshi Sakakibara
  • Kazuhiro Oiwa
  • Tatsuya Suda
Conference paper
Part of the Proceedings in Information and Communications Technology book series (PICT, volume 1)


Molecular communication is one method for communication among biological nanomachines. Nanomachines are artificial or biological nano-scale devices that perform simple computation, sensing, or actuation. Future applications using nanomachines may require various communication mechanisms. For example, broadcast is one primitive communication for transmission from one sender to many receivers. In this paper, we discuss preliminary work on designing a molecular communication system that is adapted from the molecular motor transport mechanism existing in biological cells. In the proposed molecular motor mechanism, a sender releases information molecules, and molecular motors transport the information molecules along microtubule filaments to receiver nanomachines up to hundreds of micrometers away. This paper describes some possible arrangements for microtubule filaments and simulations to evaluate sending of one information molecule to many receivers. The simulation results indicate that the proposed molecular motor system transports simulated information molecules (100nm radius spheres) more quickly than a diffusion-only communication and that placement of receivers at the plus-end of microtubules results in lower propagation delay.


Bionanotechnology nanomachine communication molecular motor self-organization microtubule topology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moritani, Y., Hiyama, S., Suda, T.: Molecular Communication for Health Care Applications. In: Fourth Annual IEEE Conference on Pervasive Computing and Communications and Workshops (2006)Google Scholar
  2. 2.
    Suda, T., Moore, M., Nakano, T., Egashira, R., Enomoto, A.: Exploratory Research on Molecular Communication between Nanomachines. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO) (2005)Google Scholar
  3. 3.
    Kinosita, K., Adachi, K., Itoh, H.: Rotation of F1-ATPASE: How an ATP-Driven Molecular Machine May Work. Annual Review of Biophysics and Biomolecular Structure 33, 245–268 (2004)CrossRefGoogle Scholar
  4. 4.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell. Garland Science, 4th Bk & Cdr edn. (2002)Google Scholar
  5. 5.
    Pawson, T., Nash, P.: Protein-protein Interactions Define Specificity in Signal Transduction 14(9), 1027–1047 (2000)Google Scholar
  6. 6.
    Holliger, P., Hoogenboom, H.R.: Artificial Antibodies and Enzymes: Mimicking Nature and Beyond. Trends Biotechnol. 13(1), 7–9 (1995)CrossRefGoogle Scholar
  7. 7.
    Pelesko, J.A., Bernstein, D.H.: Modeling MEMS and NEMS. CRC Press, Boca Raton (2002)CrossRefGoogle Scholar
  8. 8.
    Roukes, M.L.: Nanoelectromechanical Systems. In: Tech. Digest of the 2000 Solid State Sensor and Actuator Workshop (2000)Google Scholar
  9. 9.
    Dueber, J.E., Yeh, B.J., Bhattacharyya, R.P., Lim, W.A.: Rewiring cell signaling: the logic and plasticity of eukaryotic protein circuitry. Current Opinion in Structural Biology 14, 690–699 (2004)CrossRefGoogle Scholar
  10. 10.
    Weiss, R., Basu, S., Hooshangi, S., Kalmbach, A., Karig, D., Mehreja, R., Netravali, I.: Genetic Circuit Building Blocks for Cellular Computation, Communications, and Signal Processing. Natural Computing 2, 47–84 (2003)CrossRefGoogle Scholar
  11. 11.
    Head, T., Yamamura, M., Gal, S.: Aqueous Computing: Writing on Molecules. In: Proc. the Congress on Evolutionary Computation (1999)Google Scholar
  12. 12.
    Elowttz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)CrossRefGoogle Scholar
  13. 13.
    Endy, D., Brent, R.: Modeling cellular behavior. Nature 409, 391–395 (2001)CrossRefGoogle Scholar
  14. 14.
    Kobayashi, H., Karn, M., Araki, M., Chung, K., Gardner, T.S., Cantor, C.R., Collins, J.J.: Programmable cells: Interfacing natural and engineered gene networks. PNAS 101(22), 8414–8419 (2004)CrossRefGoogle Scholar
  15. 15.
    You, L., Cox III, R.S., Weiss, R., Arnold, F.H.: Programmed population control by cell-cell communication and regulated killing. Nature 428, 868–871 (2004)CrossRefGoogle Scholar
  16. 16.
    Hess, H., Matzke, C., Doot, R., Clemmens, J., Bachand, G., Bunker, B., Vogel, V.: Molecular shuttles operating undercover: A new photolithographic approach for the fabrication of structured surfaces supporting directed motility. Nano Letters 3, 1651–1655 (2003)CrossRefGoogle Scholar
  17. 17.
    Hiratsuka, Y., Tada, T., Oiwa, K., Kanayama, T., Uyeda, T.Q.: Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks. Biophysics Journal 81, 1555–1561 (2001)CrossRefGoogle Scholar
  18. 18.
    Klumpp, S., Lipowsky, R.: Cooperative cargo transport by several molecular motors. PNAS 102(48), 17284–17289 (2005)CrossRefGoogle Scholar
  19. 19.
    Hotani, H., Horio, T.: Dynamics of Microscopy: Microtubules Visualized by Darkfield Treadmilling and Dynamic Instability. Cell Motility and the Cytoskeleton 10, 229–236 (1988)CrossRefGoogle Scholar
  20. 20.
    Chakravarty, A., Howard, L., Compto, D.A.: A mechanistic Model for the Organization of Microtubule Asters by Motor and Non-Motor Proteins in a Mammalian Mitotic Extract. MBC (2004)Google Scholar
  21. 21.
    Malikov, V., Cytrynbaum, E.N., Kashina, A., Mogilner, A., Rodionov, V.: Centering of a radial microtubule array by translocation along microtubules spontaneously nucleated in the cytoplasm. Nature, Cell biology (2005)Google Scholar
  22. 22.
    Nedelec, F.J., Surrey, T., Maggs, A.C., Leibler, S.: Self-organization of microtubules and motors. Nature 389, 305–308 (1997)CrossRefGoogle Scholar
  23. 23.
    Mitchison, T.J.: Localization of an Exchangeable GTP binding site at the plus end of microtubules. Science 261, 1044 (1993)CrossRefGoogle Scholar
  24. 24.
    Doot, R.K., Hess, H., Vogel, V.: Engineered networks of oriented microtubule filaments for directed cargo transport. Soft Matter (2006)Google Scholar
  25. 25.
    Nedelec, F.: Computer Simulations Reveal Motor Properties Generating Stable Anti-Parallel Microtubule Interactions. Journal of Cell Biology 158(6), 1005–1015 (2002)CrossRefGoogle Scholar
  26. 26.
    Snider, J., Lin, F., Zahedi, N., Rodionov, V., Clare, Y.C., Gross, S. P.: Intracellular actin-based transport: How far you go depends on how often you switch. PNAS (2004)Google Scholar
  27. 27.
    Eckford, A.W.: Nanoscale Communication with Brownian Motion., Computer Science Information Theory, arXiv:cs/0703034v1 (2007)Google Scholar
  28. 28.
    Prank, K., Gabbiani, F., Brabant, G.: Coding efficiency and information rates in transmembrane signaling. BioSystems 55, 15–22 (2000)CrossRefGoogle Scholar
  29. 29.
    Thomas, P.J., Spencer, D.J., Hampton, S.K., Park, P., Zurkus, J.P.: The Diffusion Mediated Biochemical Signal Relay Channel. In: Advances in Neural Information Processing Systems 16. MIT Press, Cambridge (2004)Google Scholar

Copyright information

© Springer Tokyo 2009

Authors and Affiliations

  • Michael J. Moore
    • 1
  • Akihiro Enomoto
    • 1
  • Tadashi Nakano
    • 1
  • Atsushi Kayasuga
    • 2
  • Hiroaki Kojima
    • 2
  • Hitoshi Sakakibara
    • 2
  • Kazuhiro Oiwa
    • 2
  • Tatsuya Suda
    • 1
  1. 1.Information and Computer ScienceUniversity of CaliforniaIrvineUSA
  2. 2.National Institute of Information and Communications Technology(NICT)Japan

Personalised recommendations