Skip to main content

Molecular Communication: Simulation of Microtubule Topology

  • Conference paper

Part of the book series: Proceedings in Information and Communications Technology ((PICT,volume 1))

Abstract

Molecular communication is one method for communication among biological nanomachines. Nanomachines are artificial or biological nano-scale devices that perform simple computation, sensing, or actuation. Future applications using nanomachines may require various communication mechanisms. For example, broadcast is one primitive communication for transmission from one sender to many receivers. In this paper, we discuss preliminary work on designing a molecular communication system that is adapted from the molecular motor transport mechanism existing in biological cells. In the proposed molecular motor mechanism, a sender releases information molecules, and molecular motors transport the information molecules along microtubule filaments to receiver nanomachines up to hundreds of micrometers away. This paper describes some possible arrangements for microtubule filaments and simulations to evaluate sending of one information molecule to many receivers. The simulation results indicate that the proposed molecular motor system transports simulated information molecules (100nm radius spheres) more quickly than a diffusion-only communication and that placement of receivers at the plus-end of microtubules results in lower propagation delay.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moritani, Y., Hiyama, S., Suda, T.: Molecular Communication for Health Care Applications. In: Fourth Annual IEEE Conference on Pervasive Computing and Communications and Workshops (2006)

    Google Scholar 

  2. Suda, T., Moore, M., Nakano, T., Egashira, R., Enomoto, A.: Exploratory Research on Molecular Communication between Nanomachines. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO) (2005)

    Google Scholar 

  3. Kinosita, K., Adachi, K., Itoh, H.: Rotation of F1-ATPASE: How an ATP-Driven Molecular Machine May Work. Annual Review of Biophysics and Biomolecular Structure 33, 245–268 (2004)

    Article  Google Scholar 

  4. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell. Garland Science, 4th Bk & Cdr edn. (2002)

    Google Scholar 

  5. Pawson, T., Nash, P.: Protein-protein Interactions Define Specificity in Signal Transduction 14(9), 1027–1047 (2000)

    Google Scholar 

  6. Holliger, P., Hoogenboom, H.R.: Artificial Antibodies and Enzymes: Mimicking Nature and Beyond. Trends Biotechnol. 13(1), 7–9 (1995)

    Article  Google Scholar 

  7. Pelesko, J.A., Bernstein, D.H.: Modeling MEMS and NEMS. CRC Press, Boca Raton (2002)

    Book  Google Scholar 

  8. Roukes, M.L.: Nanoelectromechanical Systems. In: Tech. Digest of the 2000 Solid State Sensor and Actuator Workshop (2000)

    Google Scholar 

  9. Dueber, J.E., Yeh, B.J., Bhattacharyya, R.P., Lim, W.A.: Rewiring cell signaling: the logic and plasticity of eukaryotic protein circuitry. Current Opinion in Structural Biology 14, 690–699 (2004)

    Article  Google Scholar 

  10. Weiss, R., Basu, S., Hooshangi, S., Kalmbach, A., Karig, D., Mehreja, R., Netravali, I.: Genetic Circuit Building Blocks for Cellular Computation, Communications, and Signal Processing. Natural Computing 2, 47–84 (2003)

    Article  Google Scholar 

  11. Head, T., Yamamura, M., Gal, S.: Aqueous Computing: Writing on Molecules. In: Proc. the Congress on Evolutionary Computation (1999)

    Google Scholar 

  12. Elowttz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Article  Google Scholar 

  13. Endy, D., Brent, R.: Modeling cellular behavior. Nature 409, 391–395 (2001)

    Article  Google Scholar 

  14. Kobayashi, H., Karn, M., Araki, M., Chung, K., Gardner, T.S., Cantor, C.R., Collins, J.J.: Programmable cells: Interfacing natural and engineered gene networks. PNAS 101(22), 8414–8419 (2004)

    Article  Google Scholar 

  15. You, L., Cox III, R.S., Weiss, R., Arnold, F.H.: Programmed population control by cell-cell communication and regulated killing. Nature 428, 868–871 (2004)

    Article  Google Scholar 

  16. Hess, H., Matzke, C., Doot, R., Clemmens, J., Bachand, G., Bunker, B., Vogel, V.: Molecular shuttles operating undercover: A new photolithographic approach for the fabrication of structured surfaces supporting directed motility. Nano Letters 3, 1651–1655 (2003)

    Article  Google Scholar 

  17. Hiratsuka, Y., Tada, T., Oiwa, K., Kanayama, T., Uyeda, T.Q.: Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks. Biophysics Journal 81, 1555–1561 (2001)

    Article  Google Scholar 

  18. Klumpp, S., Lipowsky, R.: Cooperative cargo transport by several molecular motors. PNAS 102(48), 17284–17289 (2005)

    Article  Google Scholar 

  19. Hotani, H., Horio, T.: Dynamics of Microscopy: Microtubules Visualized by Darkfield Treadmilling and Dynamic Instability. Cell Motility and the Cytoskeleton 10, 229–236 (1988)

    Article  Google Scholar 

  20. Chakravarty, A., Howard, L., Compto, D.A.: A mechanistic Model for the Organization of Microtubule Asters by Motor and Non-Motor Proteins in a Mammalian Mitotic Extract. MBC (2004)

    Google Scholar 

  21. Malikov, V., Cytrynbaum, E.N., Kashina, A., Mogilner, A., Rodionov, V.: Centering of a radial microtubule array by translocation along microtubules spontaneously nucleated in the cytoplasm. Nature, Cell biology (2005)

    Google Scholar 

  22. Nedelec, F.J., Surrey, T., Maggs, A.C., Leibler, S.: Self-organization of microtubules and motors. Nature 389, 305–308 (1997)

    Article  Google Scholar 

  23. Mitchison, T.J.: Localization of an Exchangeable GTP binding site at the plus end of microtubules. Science 261, 1044 (1993)

    Article  Google Scholar 

  24. Doot, R.K., Hess, H., Vogel, V.: Engineered networks of oriented microtubule filaments for directed cargo transport. Soft Matter (2006)

    Google Scholar 

  25. Nedelec, F.: Computer Simulations Reveal Motor Properties Generating Stable Anti-Parallel Microtubule Interactions. Journal of Cell Biology 158(6), 1005–1015 (2002)

    Article  Google Scholar 

  26. Snider, J., Lin, F., Zahedi, N., Rodionov, V., Clare, Y.C., Gross, S. P.: Intracellular actin-based transport: How far you go depends on how often you switch. PNAS (2004)

    Google Scholar 

  27. Eckford, A.W.: Nanoscale Communication with Brownian Motion. arXiv.org., Computer Science Information Theory, arXiv:cs/0703034v1 (2007)

    Google Scholar 

  28. Prank, K., Gabbiani, F., Brabant, G.: Coding efficiency and information rates in transmembrane signaling. BioSystems 55, 15–22 (2000)

    Article  Google Scholar 

  29. Thomas, P.J., Spencer, D.J., Hampton, S.K., Park, P., Zurkus, J.P.: The Diffusion Mediated Biochemical Signal Relay Channel. In: Advances in Neural Information Processing Systems 16. MIT Press, Cambridge (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Tokyo

About this paper

Cite this paper

Moore, M.J. et al. (2009). Molecular Communication: Simulation of Microtubule Topology. In: Suzuki, Y., Hagiya, M., Umeo, H., Adamatzky, A. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-88981-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-88981-6_12

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-88980-9

  • Online ISBN: 978-4-431-88981-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics