Advertisement

Self-organized Spatio-temporal Oscillation Observed in a Chain of Non-oscillatory Cells

  • Yue Ma
  • Yoshiko Takenaka
  • Kenichi Yoshikawa
Conference paper
Part of the Proceedings in Information and Communications Technology book series (PICT, volume 1)

Abstract

Oscillations represent a ubiquitous phenomenon in biology systems. Cells compute their complex genetic network in parallel, and interact each other to generate various patterns, in static or dynamic form. The conventional models of biological periodic oscillations are usually proposed in such a way that cellular signal processing and genetic feedback networks manifest themselves as self-excited oscillators. Thus the collective oscillation is obtained from synchronization of a number of autonomous oscillators. In this paper we propose a hypothesis for the occurrence of collective oscillation on a group of non-oscillatory cell.

Keywords

Hopf Bifurcation Coupling Strength Physical Review Letter Cell Index Collective Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schibler, U., Naef, F.: Cellular oscillators: rhythmic gene expression and metabolism. Current Opinion in Cell Biology 17(2), 223–229 (2005)CrossRefGoogle Scholar
  2. 2.
    Pourquie, O.: The Segmentation Clock: Converting Embryonic Time into Spatial Pattern. Science 301(5631), 328–330 (2003)CrossRefGoogle Scholar
  3. 3.
    Stark, J., Chan, C., George, A.J.T.: Oscillations in the immune system. Immunological Reviews 216(1), 213–231 (2007)MathSciNetGoogle Scholar
  4. 4.
    Tiana, G., Krishna, S., Pigolotti, S., Jensen, M.H., Sneppen, K.: Oscillations and temporal signalling in cells. Physical Biology 4(2), R1–R17 (2007)CrossRefGoogle Scholar
  5. 5.
    Hirata, H., Yoshiura, S., Ohtsuka, T., Bessho, Y., Harada, T., Yoshikawa, K., Kageyama, R.: Oscillatory Expression of the bHLH Factor Hes1 Regulated by a Negative Feedback Loop. Science 298(5594), 840–843 (2002)CrossRefGoogle Scholar
  6. 6.
    Hoffmann, A., Levchenko, A., Scott, M.L., Baltimore, D.: The Ikappa B-NF-kappa B Signaling Module: Temporal Control and Selective Gene Activation. Science 298(5596), 1241–1245 (2002)CrossRefGoogle Scholar
  7. 7.
    Lewis, J.: Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator. Current Biology 13(16), 1398–1408 (2003)CrossRefGoogle Scholar
  8. 8.
    Chen, L., Aihara, K.: A model of periodic oscillation for genetic regulatory systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(10), 1429–1436 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Masamizu, Y., Ohtsuka, T., Takashima, Y., Nagahara, H., Takenaka, Y., Yoshikawa, K., Okamura, H., Kageyama, R.: Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells. Proceedings of the National Academy of Sciences 103(5), 1313–1318 (2006)CrossRefGoogle Scholar
  10. 10.
    Gonze, D., Goldbeter, A.: Circadian rhythms and molecular noise. Chaos: An Interdisciplinary Journal of Nonlinear Science 16(2), 026110 (2006)CrossRefGoogle Scholar
  11. 11.
    Garcia-Ojalvo, J., Elowitz, M., Strogatz, S.: Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. USA 101, 10955–10960 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. Theoret. Biol. 25, 1–47 (1969)CrossRefGoogle Scholar
  13. 13.
    Ashwin, P., Timme, M.: Nonlinear dynamics: When instability makes sense. Nature 436(7047), 36–37 (2005)CrossRefGoogle Scholar
  14. 14.
    Angeli, D., Ferrell Jr., J.E., Sontag, E.D.: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proceedings of the National Academy of Sciences 101(7), 1822–1827 (2007)CrossRefGoogle Scholar
  15. 15.
    Kusters, J.M.A.M., Cortes, J.M., van Meerwijk, W.P.M., Ypey, D.L., Theuvenet, A.P.R., Gielen, C.C.A.M.: Hysteresis and bistability in a realistic cell model for calcium oscillations and action potential firing. Physical Review Letters 98, 098107 (2007)CrossRefGoogle Scholar
  16. 16.
    Maamar, H., Raj, A., Dubnau, D.: Noise in gene expression determines cell fate in bacillus subtilis. Science 317, 526–529 (2007)CrossRefGoogle Scholar
  17. 17.
    Kim, J.R., Yoon, Y., Cho, K.H.: Coupled feedback loops form dynamic motifs of cellular networks. Biophysical Journal 94, 359–365 (2008)CrossRefGoogle Scholar
  18. 18.
    Makita, N., Yoshikawa, K.: Atp/adp switches the higher-order structure of DNA in the presence of spermidine. FEBS Letters 460(2), 333–337 (1999)CrossRefGoogle Scholar
  19. 19.
    Tsumoto, K., Yoshikawa, K.: RNA switches the higher-order structure of DNA. Biophysical Chemistry 82(1), 1–8 (1999)CrossRefGoogle Scholar
  20. 20.
    Luckel, F., Kubo, K., Tsumoto, K., Yoshikawa, K.: Enhancement and inhibition of DNA transcriptional activity by spermine: A marked difference between linear and circular templates. FEBS Letters 579(23), 5119–5122 (2005)CrossRefGoogle Scholar
  21. 21.
    Mamasakhlisov, Y.S., Hayryan, S., Morozov, V.F., Hu, C.K.: RNA folding in the presence of counterions. Physical Review E 75(6), 061907 (2007)CrossRefGoogle Scholar
  22. 22.
    Schanda, P., Forge, V., Brutscher, B.: Protein folding and unfolding studied at atomic resolution by fast two-dimensional NMR spectroscopy. PNAS 104(27), 11257–11262 (2007)CrossRefGoogle Scholar
  23. 23.
    Etienne-Manneville, S., Hall, A.: RHO gtpases in cell biology. Nature 420(6916), 629–635 (2002)CrossRefGoogle Scholar
  24. 24.
    Takenaka, Y., Nagahara, H., Kitahata, H., Yoshikawa, K.: Large-scale on-off switching of genetic activity mediated by the folding-unfolding transition in a giant DNA molecule: An hypothesis. Physical Review E, 031905 (2008)Google Scholar
  25. 25.
    Yanagita, T., Nishiura, Y., Kobayashi, R.: Signal propagation and failure in one-dimensional fitzhugh-nagumo equations with periodic stimuli. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 71(3), 036226 (2005)Google Scholar
  26. 26.
    Nekhamkina, O., Sheintuch, M.: Boundary-induced spatiotemporal complex patterns in excitable systems. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 73(6), 066224 (2006)MathSciNetGoogle Scholar
  27. 27.
    Smale, S.: A mathematical model of two cells via turing’s equation. In: Marsden, J.E., McCracken, M. (eds.) The Hopf Bifurcation and Its Application. Springer, NY (1974)Google Scholar
  28. 28.
    Pogromsky, A.Y.: Passivity based design of synchronizing systems. Int. J. Bifurcation and Chaos 8(2), 295–319 (1998)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Pogromsky, A., Glad, T., Nijmeijer, H.: On diffusion driven oscillations in coupled dynamical systems. International Journal of Bifurcation and Chaos 4, 629–644 (1999)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Gomez-Marin, A., Garcia-Ojalvo, J., Sancho, J.M.: Self-sustained spatiotemporal oscillations induced by membrane-bulk coupling. Physical Review Letters 98(16), 168303 (2007)CrossRefGoogle Scholar
  31. 31.
    Coullet, P., Lega, J., Houchmanzadeh, B., Lajzerowicz, J.: Breaking chirality in nonequilibrium systems. Physical Review Letters 65, 1352–1355 (1990)CrossRefGoogle Scholar
  32. 32.
    Hagberg, A., Meron, E.: Complex patterns in reaction-diffusion systems: A tale of two front instabilities. Chaos 4(3), 477–484 (1994)CrossRefGoogle Scholar
  33. 33.
    Bode, M.: Front-bifurcations in reaction diffusion systems with inhomogeneous parameter distributions. Physica D: Nonlinear Phenomena, 270–286 (1997)Google Scholar
  34. 34.
    Prat, A., Li, Y.: Stability of front solutions in inhomogeneous media. Physica D: Nonlinear Phenomena, 50–68 (January 2003)Google Scholar
  35. 35.
    Prat, A., Li, Y., Bressloff, P.: Inhomogeneity-induced bifurcation of stationary and oscillatory pulses. Physica D: Nonlinear Phenomena, 177–199 (January 2005)Google Scholar
  36. 36.
    Li, Y.: Tango waves in a bidomain model of fertilization calcium waves. Physica D: Nonlinear Phenomena, 27–49 (January 2003)Google Scholar
  37. 37.
    Miyazaki, J., Kinoshita, S.: Stopping and initiation of a chemical pulse at the interface of excitable media with different diffusivity. Physical Review E 76, 66201 (2007)CrossRefGoogle Scholar
  38. 38.
    Shnerb, N.M., Louzoun, Y., Bettelheim, E., Solomon, S.: The importance of being discrete: Life always wins on the surface. PNAS 97, 10322–10324 (2000)MATHCrossRefGoogle Scholar
  39. 39.
    Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572 (1987)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Comte, J.C., Morfu, S., Marquié, P.: Propagation failure in discrete bistable reaction-diffusion systems: theory and experiments. Phys. Rev. E 64, 027102 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Tokyo 2009

Authors and Affiliations

  • Yue Ma
    • 1
  • Yoshiko Takenaka
    • 2
  • Kenichi Yoshikawa
    • 1
  1. 1.Spatio-Temporal Order Project, ICORP, JST, Department of Physics, Graduate School of ScienceKyoto UniversityJapan
  2. 2.Venture Business LaboratoryKyoto UniversityJapan

Personalised recommendations