Skip to main content

Competitive Nuclear Export of Cyclin D1 and Hic-5 Regulates Anchorage-Dependence of Cell Growth and Survival

  • Conference paper
New Trends in the Molecular and Biological Basis for Clinical Oncology
  • 327 Accesses

Abstract

Cyclin D1 is a proto-oncogene whose amplification and overexpression are frequently associated with human cancers (Diehl, 2002). Because its subcellular localization is of critical importance for its oncogenicity, the regulatory mechanisms have been under intense investigation. Here we discovered that the nuclear localization of cyclin D1 was anchorage-dependent, and its disruption caused anchorage-independent growth and survival of cells, a hallmark of cellular transformation. In adherent cells, cyclin D1 was localized in the nucleus by a focal adhesion protein, Hic-5, shuttling in and out of the nucleus through the CRM1 export system (Shibanuma et al. 2003) and thereby counteracting the nuclear export of cyclin Dl. In non-adherent cells, cyclin Dl was actively exported from the nucleus because the shuttling of Hic-5, which is redox-sensitive (Shibanuma et al. 2003), was interrupted by an elevated level of reactive oxygen species (ROS). However, when a mutant with the shuttling ability resistant to ROS was introduced into cells, cyclin Dl was detained in the nucleus, and importantly, a significant population of cells survived under non-adherent conditions. Of interest, the discovered phenomenon interconnected the oncogenic potential of two oncogenes, as activated ras circumvented the above regulation and achieved the predominant nuclear localization of cyclin Dl and thus, growth in non-adherent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alt, J.R., J.L Cleveland, M. Hannink, and J.A. Diehl. (2000) Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 14:3102–14.

    Article  PubMed  CAS  Google Scholar 

  • Coqueret, O. (2002) Linking cyclins to transcriptional control. Gene. 299:35–55.

    Article  PubMed  CAS  Google Scholar 

  • Diehl, J.A. (2002) Cycling to cancer with cyclin D1. Cancer Biol Ther. 1:226–31.

    PubMed  CAS  Google Scholar 

  • Diehl, J.A, M. Cheng, M.F. Roussel, and C.J. Sherr. (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12:3499–511.

    Article  PubMed  CAS  Google Scholar 

  • Diehl, J.A., F. Zindy, and C.J. Sherr. (1997) Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 11:957–72.

    Article  PubMed  CAS  Google Scholar 

  • Ewen, M.E., and J. Lamb. (2004) The activities of cyclin D1 that drive tumorigenesis. Trends Mol Med. 10:158–62.

    Article  PubMed  CAS  Google Scholar 

  • Gladden, A.B., and J.A. Diehl. (2005) Location, location, location: the role of cyclin D1 nuclear localization in cancer. J Cell Biochem. 96:906–13.

    Article  PubMed  CAS  Google Scholar 

  • Guerrero-Santoro, J., L. Yang, M.R. Stallcup, and D.B. DeFranco. (2004) Distinct LDV1 domains of Hic-5/ARA55 are required for nuclear matrix targeting and glucocorticoid receptor binding and coactivation. J Cell Biochem. 92:810–9.

    Article  PubMed  CAS  Google Scholar 

  • Kozar, K., M.A. Ciemerych, V.I. Rebel, H. Shigematsu, A. Zagozdzon, E. Sicinska, Y. Geng, Q. Yu, S. Bhattacharya, R.T. Bronson, K. Akashi, and P. Sicinski. (2004) Mouse development and cell proliferation in the absence of D-cyclins. Cell. 118:477–91.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, J., S. Ramaswamy, H.L. Ford, B. Contreras, R.V. Martinez, F.S. Kittrell, C.A. Zahnow, N. Patterson, T.R. Golub, and M.E. Ewen. (2003) A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell. 114:323–34.

    Article  PubMed  CAS  Google Scholar 

  • Matsuya, M., H. Sasaki, H. Aoto, T. Mitaka, K. Nagura, T. Ohba, M. Ishino, S. Takahashi, R. Suzuki, and T. Sasaki. (1998) Cell adhesion kinase beta forms a complex with a new member, Hic-5, of proteins localized at focal adhesions. J Biol Chem. 273:1003–14.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., M. Asakawa, M. Hayashi, M. Imura, T. Ohki, E. Hirao, J.R. Kim-Kaneyama, K. Nose, and M. Shibanuma. (2006) Oligomerizing potential of a focal adhesion LIM protein Hic-5 organizing a nuclear-cytoplasmic shuttling complex. J Biol Chem. 281:22048–61.

    Article  PubMed  CAS  Google Scholar 

  • Nishiya, N., K. Tachibana, M. Shibanuma, J.I. Mashimo, and K. Nose. (2001) Hic-5-reduced cell spreading on fibronectin: competitive effects between paxillin and Hic-5 through interaction with focal adhesion kinase. Mol Cell Biol. 21:5332–45.

    Article  PubMed  CAS  Google Scholar 

  • Quelle, D.E., R.A. Ashmun, S.A. Shurtleff, J.Y. Kato, D. Bar-Sagi, M.F. Roussel, and C.J. Sherr. (1993) Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev. 7:1559–71.

    Article  PubMed  CAS  Google Scholar 

  • Resnitzky, D., M. Gossen, H. Bujard, and S.I. Reed. (1994) Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol. 14:1669–79.

    PubMed  CAS  Google Scholar 

  • Sherr, C.J., and J.M. Roberts. (2004) Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 18:2699–711.

    Article  PubMed  CAS  Google Scholar 

  • Shibanuma, ML, J.R. Kim-Kaneyama, K. Ishino, N. Sakamoto, T. Hishiki, K. Yamaguchi, K. Mori, J. Mashimo, and K. Nose. (2003) Hic-5 communicates between focal adhesions and the nucleus through oxidant-sensitive nuclear export signal. Mol Biol Cell. 14:1158–71.

    Article  PubMed  CAS  Google Scholar 

  • Shibanuma, M., J.R. Kim-Kaneyama, S. Sato, and K. Nose. (2004) A LIM protein, Hic-5, functions as a potential coactivator for Spl. J Cell Biochem. 91:633–45.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, S.M., M. Hagel, and C.E. Turner. (1999) Characterization of a focal adhesion protein, Hic-5, that shares extensive homology with paxillin. J Cell Sci. 112(Pt 2):181–90.

    PubMed  CAS  Google Scholar 

  • Yang, J.J., J.S. Kang, and R.S. Krauss. (1998) Ras signals to the cell cycle machinery via multiple pathways to induce anchorage-independent growth. Mol Cell Biol. 18:2586–95.

    PubMed  CAS  Google Scholar 

  • Yu, Q., Y. Geng, and P. Sicinski. (2001) Specific protection against breast cancers by cyclin D1 ablation. Nature. 411:1017–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this paper

Cite this paper

Mori, K., Oshima, Y., Nose, K., Shibanuma, M. (2009). Competitive Nuclear Export of Cyclin D1 and Hic-5 Regulates Anchorage-Dependence of Cell Growth and Survival. In: Tachikawa, T., Nose, K., Ohmori, T., Adachi, M. (eds) New Trends in the Molecular and Biological Basis for Clinical Oncology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-88663-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-88663-1_15

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-88662-4

  • Online ISBN: 978-4-431-88663-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics