Immunological Principles of Drug Hypersensitivity

  • Anna Zawodniak
  • Werner J. Pichler
Part of the Allergy Frontiers book series (ALLERGY, volume 3)


Drug Hypersensitivity Reactions account for about one of six of all adverse drug reactions. T lymphocytes were shown to play a central role in mediating drug allergy and are involved in all types of immune response to the drugs. Upon antigen-specific stimulation T cells secrete various cytokines and can orchestrate different effector mechanisms of immune response including immediate, IgE mediated reactions like anaphylaxis or urticaria and delayed types like maculopapular, bullous or pustular exanthemas. Small chemical substances like drugs may activate the innate and adaptive immune system by covalent binding and modification of soluble or cell bound proteins, which are then recognized as a foreign antigenic proteins. Drug can also directly interact with immune receptors like the highly polymorphic T cell receptors and thus induce specific immune activation. This new concept is named pharmacologic interaction with immune receptors (p-i concept). Understanding of complex immune mechanisms and risk factors involved in allergic reaction to small chemical substances may not only lead to the improvement in drug allergy diagnosis and treatment but also allow us to understand better the immune mechanisms in general.


Allergy Clin Immunol Toxic Epidermal Necrolysis Reactive Metabolite World Allergy Organization Drug Hypersensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of Adverse Drug Reactions in Hospitalized Patients: A Meta-Analysis of Prospective Studies. JAMA 279:1200–1205PubMedCrossRefGoogle Scholar
  2. 2.
    Johansson S, Bieber T, Dahl R, Et Al. (2004) Revised Nomenclature for Allergy for Global Use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunology 113:832–836CrossRefGoogle Scholar
  3. 3.
    Romagnani S (1997) the Th1/Th2 Paradigm. Immunol today 18:263–266PubMedCrossRefGoogle Scholar
  4. 4.
    Janeway CA, Travers P, Walport M, Sholmchik MJ (2001) Immunobiology: the Immune System in Health and Disease. New York: Garland ScienceGoogle Scholar
  5. 5.
    Naisbitt DJ, Gordon SF, Pirmohamed M, Park BK (2000) Immunological Principles of Adverse Drug Reactions: the Initiation and Propagation of Immune Responses Elicited by Drug Treatment. Drug Saf 23:483–507PubMedCrossRefGoogle Scholar
  6. 6.
    Pichler WJ (2003) Delayed Drug Hypersensitivity Reactions. Ann Intern Med 139:683–693PubMedGoogle Scholar
  7. 7.
    Padovan E, Bauer T, tongio MM, Kalbacher H, Weltzien HU (1997) Penicilloyl Peptides Are Recognized As T Cell Antigenic Determinants in Penicillin Allergy. Eur J Immunol 27:1303–1307PubMedCrossRefGoogle Scholar
  8. 8.
    Mauri-Hellweg D, Zanni M, Frei E, Bettens F, Brander C, Mauri D, Padovan E, Weltzien HU, Pichler WJ (1996) Cross-Reactivity of T Cell Lines and Clones to Beta-Lactam Antibiotics. J Immunol 157:1071–1109PubMedGoogle Scholar
  9. 9.
    Morel E, Bellon T (2007) Amoxicillin Conjugates to HLA Class I Molecules and Interferes With Signalling Through the ILT2/LIR-1/CD85j Inhibitory Receptor. Allergy 62:190–196PubMedCrossRefGoogle Scholar
  10. 10.
    Van Der Ven AJ, Koopmans PP, Vree TB, Van Der Meer JW (1991) Adverse Reactions to Cotrimoxazol in HIV Infection. Lancet 338:431–433PubMedCrossRefGoogle Scholar
  11. 11.
    Naisbitt DJ, Hough SJ, Gill HJ, Pirmohamed M, Kitteringham NR, Park BK (1999) Cellular Disposition of Sulphamethoxazole and Its Metabolites: Implications for Hypersensitivity. Br J Pharmacol 126:1393–1407PubMedCrossRefGoogle Scholar
  12. 12.
    Manchanda T, Hess D, Dale L, Ferguson SG, Rieder MJ (2002) Haptenation of Sulfonamide Reactive Metabolites to Cellular Proteins. Mol Pharmacol 62:1011–1026PubMedCrossRefGoogle Scholar
  13. 13.
    Crispe IN (2003) Hepatic T Cells and Liver tolerance. Nat Rev Immunol 3:51–62PubMedCrossRefGoogle Scholar
  14. 14.
    Bowen DG, Zen M, Holz L, Davis T, Mccaughan GW (2004) the Site of Primary T Cell Activation is A Determinant of the Balance Between Intrahepatic tolerance and Immunity. J Clin Invest 114:701–712PubMedGoogle Scholar
  15. 15.
    Jurk M, Kritzler A, Schulte B, Tluk S, Schetter C, Krieg AM, Vollmer J (2006) Modulating Responsiveness of Human TLR7 and 8 to Small Molecule Ligands With T-Rich Phosphorothiate Oligodeoxynucleotides. Eur J Immunol 36:1815–1826PubMedCrossRefGoogle Scholar
  16. 16.
    Prins R, Craft N, Bruhn KW, Khan-Farooqi H, Koya RC, Stripecke R, Miller JF, Liau LM (2006) the TLR-7 Agonist, Imiquimod, Enhances Dendritic Cell Survival and Promotes Tumor Antigen-Specific T Cell Priming: Relation to Central Nervous System Antitumor Immunity. J Immunol 176:157–164PubMedGoogle Scholar
  17. 17.
    Rifkin IR, Leadbetter EA, Busconi L, Viglianti G, Marshak-Rothstein A (2005) toll-Like Receptors, Endogenous Ligands, and Systemic Autoimmune Disease. Immunol Rev 204:27–42PubMedCrossRefGoogle Scholar
  18. 18.
    Aiba S, Terunuma A, Manome H, Tagami H (1997) Dendritic Cells Differently Respond to Haptens and Irritants by Their Production of Cytokines and Expression of Co-Stimulatory Molecules. Eur J Immunology 27:3031–3038CrossRefGoogle Scholar
  19. 19.
    Bruchhausen S, Zahn S, Valk E, Knop J, Becker D (2003) Thiol Antioxidants Block the Activation of Antigen-Presenting Cells by Contact Sensitizers. J Invest Dermatol 121:1039–1044PubMedCrossRefGoogle Scholar
  20. 20.
    Becker D, Valk E, Zahn S, Brand P, Knop J (2003) Coupling of Contact Sensitizers to Thiol Groups is A Key Event for the Activation of Monocytes and Monocyte-Derived Dendritic Cells. J Invest Dermatol 120:233–238PubMedCrossRefGoogle Scholar
  21. 21.
    Aiba S, Manome H, Nakagawa S, Mollah ZU, Ohtani T, Yoshino Y, Tagami H (2003) P 38 Mitogen-Activated Protein Kinase and Extracellular Signal-Regulated Kinases Play Distinct Roles in the Activation of Dendritic Cells by Two Representative Haptens, Nicl2 and 2,4-Dinitrochlorobenzene. J Invest Dermatol 120:390–399PubMedCrossRefGoogle Scholar
  22. 22.
    Arrighi JF, Rebsamen M, Rousset F, Kindler V, Hauser C (2001) A Critical Role for P38 Mitogen-Activated Protein Kinase in the Maturation of Human Blood-Derived Dendritic Cells Induced by Lipopolysaccharide, TNF-Alpha, and Contact Sensitizers. J Immunol 166:3837–3845PubMedGoogle Scholar
  23. 23.
    Sanderson JP, Naisbitt DJ, Farrell J, Ashby CA, Tucker MJ, Rieder MJ, Pirmohamed M, Clarke SE, Park BK (2007) Sulfamethoxazole and Its Metabolite Nitroso Sulfamethoxazole Stimulate Dendritic Cell Costimulatory Signaling. J Immunol 178:5533–5542PubMedGoogle Scholar
  24. 24.
    Rodriquez PR, Lopez S, Mayorga C, Antunez C, Fernandez TD, torres MJ, Blanca M (2006) Potential Involvement of Dendritic Cells in Delayed-Type Hypersensitivity Reactions to Betalactams. J Allergy Clin Immunol 118:949–956CrossRefGoogle Scholar
  25. 25.
    Naisbitt DJ, Farrell J, Gordon SF, Maggs JL, Burkhart C, Pichler WJ, Pirmohamed M, Park BK (2002) Covalent Binding of the Nitroso Metabolite of Sulfamethoxazole Leads to toxicity and Major Histocompatibility Complex-Restricted Antigen Presentation. Mol Pharmacol 62:628–637PubMedCrossRefGoogle Scholar
  26. 26.
    Scheibner KA, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR (2006) Hyaluronan Fragments Act As an Endogenous Danger Signal by Engaging TLR2. J Immunol 177:1272–1281PubMedGoogle Scholar
  27. 27.
    Beere HM (2005) Death Versus Survival: Functional Interaction Between the Apoptotic and Stress-Inducible Heat Shock Protein Pathways. J Clin Invest 115:2633–2639PubMedCrossRefGoogle Scholar
  28. 28.
    Shi Y, Evans JE, Rock KL (2003) Molecular Identification of A Danger Signal that Alerts the Immune System to Dying Cells. Nature 425:516–521PubMedCrossRefGoogle Scholar
  29. 29.
    Shi Y, Zheng W, Rock KL (2000) Cell Injury Releases Endogenous Adjuvants that Stimulate Cytotoxic T Cell Responses. Proc Natl Acad Sci USA 97:14590–14595PubMedCrossRefGoogle Scholar
  30. 30.
    Uetrecht JP (1999) New Concepts in Immunology Relevant to Idiosyncratic Drug Reactions: the “Danger Hypothesis” and Innate Immune System. Chem Res toxicology 12:387–395CrossRefGoogle Scholar
  31. 31.
    Descamps V, Valance A, Edlinger C (2001) Association of Human Herpesvirus 6 Infection With Drug Reaction With Eosinophilia and Systemic Symptoms. Arch Dermatol 137:301–304PubMedGoogle Scholar
  32. 32.
    Reilly TP, Lash LH, Doll MA, Hein DW, Woster PM, Svensson CG (2000) A Role for Bioactivation and Covalent Binding Within Epidermal Keratinocytes in Sulfonamide-Induced Cutaneous Drug Reactions. J Invest Dermatol 114:1164–1173PubMedCrossRefGoogle Scholar
  33. 33.
    Naisbitt DJ, Farrell J, Wong G, Depta JP, Dodd CC, Hopkins JE, Gibney CA, Chadwick DW, Pichler WJ, Pirmohamed M, Park BK (2003) Characterization of Drug-Specific T Cells in Lamotrigine Hypersensitivity. J Allergy Clin Immunol 111:1393–1403PubMedCrossRefGoogle Scholar
  34. 34.
    Naisbitt DJ, Britschgi M, Wong G, Farrell J, Depta JP, Chadwick DW, Pichler WJ, Pirmohamed M, Park BK (2003) Hypersensitivity Reactions to Carbamazepine: Characterization of the Specificity, Phenotype, and Cytokine Profile of Drug-Specific T Cell Clones. Mol Pharmacol 63:732–741PubMedCrossRefGoogle Scholar
  35. 35.
    Schnyder B, Mauri-Hellweg D, Zanni M, Bettens F, Pichler WJ (1997) Direct, MHC-Dependent Presentation of the Drug Sulfamethoxazole to Human Alphabeta T Cell Clones. J Clin Invest 100:136–141PubMedCrossRefGoogle Scholar
  36. 36.
    Zanni MP, Von Greyerz S, Schnyder B, Brander KA, Frutig K, Hari Y, Valitutti S, Pichler WJ (1998) HLA-Restricted, Processing- and Metabolism-Independent Pathway of Drug Recognition by Human Alpha Beta T Lymphocytes. J Clin Invest 102:P1591–P1598CrossRefGoogle Scholar
  37. 37.
    Zanni MP, Von Greyerz S, Hari Y, Schnyder B, Pichler WJ (1999) Recognition of Local Anesthetics by Alphabeta+ T Cells. J Invest Dermatol 112:197–204PubMedCrossRefGoogle Scholar
  38. 38.
    Zanni MP, Mauri-Hellweg D, Brander C, Wendland T, Schnyder B, Frei E, Von Greyerz S, Bircher A, Pichler WJ (1997) Characterization of Lidocaine-Specific T Cells. J Immunol 158:1139–1148PubMedGoogle Scholar
  39. 39.
    Sieben S, Kawakubo Y, Al Masaoudi T, Merk HF, Blomeke B (2002) Delayed-Type Hypersensitivity Reaction to Paraphenylenediamine is Mediated by 2 Different Pathways of Antigen Recognition by Specific Alphabeta Human T-Cell Clones. J Allergy Clin Immunology 109:1005–1011CrossRefGoogle Scholar
  40. 40.
    Christiansen C (2002) Late-Onset Allergy-Like Reactions to X-Ray Contrast Media. Curr Opin Allergy Clin Immunol 2:333–339PubMedCrossRefGoogle Scholar
  41. 41.
    Christiansen C, Pichler WJ, Skotland T (2000) Delayed Allergy-Like Reactions to X-Ray Contrast Media: Mechanistic Considerations. Eur Radiol 10:1965–1975PubMedCrossRefGoogle Scholar
  42. 42.
    Schmid DA, Pichler W (2006) T Cell-Mediated Hypersensitivity to Quinolones: Mechanisms and Cross-Reactivity. Clin Exp Allergy 36:59–69PubMedCrossRefGoogle Scholar
  43. 43.
    Pichler WJ (2005) Direct T-Cell Stimulations by Drugs, Bypassing the Innate Immune System. toxicology 209:95–100PubMedCrossRefGoogle Scholar
  44. 44.
    Suzuki Y, Inagi R, Aono T, Yamanishi K, Shiohara T (1998) Human Herpesvirus 6 Infection As A Risk Factor for the Development of Severe Drug-Induced Hypersensitivity Syndrome. Arch Dermatol 134:1108–1112PubMedCrossRefGoogle Scholar
  45. 45.
    Coopman SA, Johnson RA, Platt R, Stern R (1993) Cutaneous Disease and Drug Reactions in HIV Infection. N Engl J Med 328:1670–1674PubMedCrossRefGoogle Scholar
  46. 46.
    Shiohara T, Inaoka M, Kano Y (2006) Drug-Induced Hypersensitivity Syndrome (DIHS): A Reaction Induced by A Complex Interplay Among Herpesviruses and Antiviral and Antidrug Immune Responses. Allergol Int 55:1–8PubMedCrossRefGoogle Scholar
  47. 47.
    Shiohara T, Iijima M, Ikezawa Z, Hashimoto K (2007) the Diagnosis of A DRESS Syndrome Has Been Sufficiently Established on the Basis of Typical Clinical Features and Viral Reactivations. Br J Dermatol 156:1083–1084PubMedCrossRefGoogle Scholar
  48. 48.
    Taliercio CP, Olney BA, Lie JT (1985) Myocarditis Related to Drug Hypersensitivity. Mayo Clin Proc 60:463–468PubMedGoogle Scholar
  49. 49.
    Engel JN, Mellul VG, Goodman DB (1986) Phenytoin Hypersensitivity: A Case of Severe Acute Rhabdomyolisis. Am J Med 81:938–930CrossRefGoogle Scholar
  50. 50.
    Descamps V, Collot S, Houhou N, Ranger-Rogez S (2003) Human Herpesvirus-6 Encephalitis Associated With Hypersensitivity Syndrome. Ann Neurol 53:280PubMedCrossRefGoogle Scholar
  51. 51.
    Pirmohamed M, Park BK (2001) Genetics Susceptibility to Adverse Drug Reactions. Trends Pharmacol Sci 22:298–305PubMedCrossRefGoogle Scholar
  52. 52.
    Shear NH, Spielberg SP, Grant DM, Tanq BK, Kalow W (1986) Differences in Metabolism of Sulfonamides Predisposing to Idiosyncratic toxicity. Ann Intern Med 105:179–184PubMedGoogle Scholar
  53. 53.
    Wolkenstein P, Charue D, Laurent P, Revuz J, Roujeau JC, Bagot M (1995) Metabolic Predisposition to Cutaneous Adverse Drug Reactions: Role in toxic Epidermal Necrolysis Caused by Sulfonamides and Anticonvulsants. Arch Dermatol 131:544–551PubMedCrossRefGoogle Scholar
  54. 54.
    Carr A, Gross AS, Hoskins JM, Penny R, Cooper DA (1994) Acetylation Phenotype and Cutaneous Hypersensitivity to Trimethoprim-Sulphamethoxazole in HIV-Infected Patients. AIDS 8:333–337PubMedCrossRefGoogle Scholar
  55. 55.
    Pirmohamed M, Alfirevic A, Vilar J, Stalford A, Wilkins EG, Sim E, Park BK (2000) Association Analysis of Drug Metabolizing Enzyme Gene Polymorphisms in HIV-Positive Patients With Co-Trimoxazole Hypersensitivity. Pharmacogenetics 10:705–713PubMedCrossRefGoogle Scholar
  56. 56.
    Wolkenstein P, Loriot MA, Aractinqi S, Cabelquenne A, Beaune P, Chosidow O (2000) Prospective Evaluation of Detoxification Pathways As Markers of Cutaneous Adverse Reactions to Sulphonamides in AIDS. Pharmacogenetics 10:821–828PubMedCrossRefGoogle Scholar
  57. 57.
    Wolkenstein P, Loriot MA, Flahault A, Cadilhac M, Caumes E, Eliaszewicz M, Beaune P, Roujeau JC, Chosidow O, the EG (2005) Association Analysis of Drug Metabolizing Enzyme Gene Polymorphisms in AIDS Patients With Cutaneous Reactions to Sulfonamides. J Invest Dermatol 125:1080–1082PubMedCrossRefGoogle Scholar
  58. 58.
    Pirmohamed M, Lin K, Chadwick D, Park BK (2001) Tnfalpha Promoter Region Gene Polymorphisms in Carbamazepine-Hypersensitive Patients. Neurology 56:890–896PubMedGoogle Scholar
  59. 59.
    Chung WH, Hunq SI, Honq HS, Hsih MS, Yang LC, Ho HC, Wu JY, Chen YT (2004) Medical Genetics: A Marker for Stevens-Johnson Syndrome. Nature 428:486PubMedCrossRefGoogle Scholar
  60. 60.
    Alfirevic A, Jorgensen AL, Williamson PR, Chadwick DW, Park BK, Pirmohamed M (2006) HLA-B Locus in Caucasian Patients With Carbamazepine Hypersensitivity. Pharmacogenetics 7:813–818Google Scholar
  61. 61.
    Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C, Sayer D, Castley A, Mamotte C, Maxwell D, James I, Christiansen FT (2002) Association Between Presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and Hypersensitivity to HIV-1 Reverse-Transcriptase Inhibitor Abacavir. Lancet 359:727–732PubMedCrossRefGoogle Scholar
  62. 62.
    Gell PGH, Coombs RRA (1963) Classification of Allergic Reactions Responsible for Clinical Hypersensitivity and Disease. In: Gell PBH, Coombs RRA (Eds) Clinical Aspects of Immunology. Oxford, England: Blackwell, Pp 317–337Google Scholar
  63. 63.
    Romagnani S (2004) Immunologic Influences on Allergy and the TH1/TH2 Balance. J Allergy Clin Immunol 113:395–400PubMedCrossRefGoogle Scholar
  64. 64.
    Nassif A, Bensussan A, Dorothee G, Mami-Chouaib F, Bachot N, Bagot M, Boumsell L, Roujeau JC (2002) Drug Specific Cytotoxic T-Cells in the Skin Lesions of A Patient With toxic Epidermal Necrolysis. J Invest Dermatol 118:728–733PubMedCrossRefGoogle Scholar
  65. 65.
    Schnyder B, Frutig K, Mauri-Hellweg D, Limat A, Yawalkar N, Pichler WJ (1998) T-Cellmediated Cytotoxicity Against Keratinocytes in Sulfamethoxazol-Induced Skin Reaction. Clin Exp Allergy 28:1412–1417PubMedCrossRefGoogle Scholar
  66. 66.
    Britschgi M, Steiner UC, Schmid S, Depta JP, Senti G, Bircher A, Burkhart C, Yawalkar N, Pichler WJ (2001) T-Cell Involvement in Drug-Induced Acute Generalized Exanthematous Pustulosis. J Clin Invest 107:1433–1441PubMedCrossRefGoogle Scholar
  67. 67.
    Keller M, Spanou Z, Schaerli P, Britschgi M, Yawalkar N, Seitz M, Villiger PM, Pichler WJ (2005) T Cell-Regulated Neutrophilic Inflammation in Autoinflammatory Diseases. J Immunol 175:7678–7686PubMedGoogle Scholar
  68. 68.
    Yawalkar N, Shrikhande M, Hari Y, Nievergelt H, Braathen LR, Pichler WJ (2000) Evidence for A Role for IL-5 and Eotaxin in Activating and Recruiting Eosinophils in Drug-Induced Cutaneous Eruptions. J Allergy Clin Immunol 106:1171–1176PubMedCrossRefGoogle Scholar
  69. 69.
    Schaerli P, Britschgi M, Keller M, Steiner UC, Steinmann LS, Moser B, Pichler WJ (2004) Characterization of Human T Cells that Regulate Neutrophilic Skin Inflammation. J Immunol 173:2151–2158PubMedGoogle Scholar
  70. 70.
    Yawalkar N, Hari Y, Frutig K, Egli F, Wendland T, Braathen LR, Pichler WJ (2000) T Cells Isolated From Positive Epicutaneous Test Reactions to Amoxicillin and Ceftriaxone Are Drug Specific and Cytotoxic. J Invest Dermatol 115:647–652PubMedCrossRefGoogle Scholar
  71. 71.
    Schnyder B, Burkhart C, Schnyder-Frutig K, Von Greyerz S, Naisbitt DJ, Pirmohamed M, Park BK, Pichler WJ (2000) Recognition of Sulfamethoxazole and Its Reactive Metabolites by Drug-Specific CD4+ T Cells From Allergic Individuals. J Immunol 164:6647–6654PubMedGoogle Scholar
  72. 72.
    Pichler WJ (2003) Lessons From Drug Allergy: Against Dogmata. Curr Allergy Asthma Rep 3:1–3PubMedCrossRefGoogle Scholar
  73. 73.
    Kuechler PC, Britschgi M, Schmid S, Hari Y, Grabscheid B, Pichler WJ (2004) Cytotoxic Mechanisms in Different Forms of T-Cell-Mediated Drug Allergies. Allergy 59:613–622PubMedCrossRefGoogle Scholar
  74. 74.
    Le Cleach L, Delaire S, Boumsell L, Bagot M, Bourgault-Villada I, Bensussan A, Roujeau JC (2000) Blister Fluid T Lymphocytes During toxic Epidermal Necrolysis Are Functional Cytotoxic Cells Which Express Human Natural Killer (NK) Inhibitory Receptors. Clin Exp Immunol 119:225–230PubMedCrossRefGoogle Scholar
  75. 75.
    Chung WH, Hung SI, Yang JY, Su SC, Huang SP, Wei CY, Chin SW, Chiou CC, Chu SC, Ho HC, Yang CH, Lu CF, Wu JY, Liao YD, Chen YT. (2008) Granulysin is A Key Mediator for Disseminated Keratinocyte Death in Stevens-Johnson Syndrome and toxic Epidermal Necrolysis. Nat Med 14:1343–1350PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Anna Zawodniak
    • 1
  • Werner J. Pichler
    • 1
  1. 1.Division of Allergology, Clinic for Rheumatology and Clinical Immunology/Allergology, InselspitalUniversity of BernBernSwitzerlande

Personalised recommendations