Airway Remodeling in Asthma and Therapeutic Implications

  • Tari Haahtela
Part of the Allergy Frontiers book series (ALLERGY, volume 3)


Airway inflammation is a defense response to potentially harmful antigens. In allergic asthma the offending antigens are allergens, the inflammatory response being, in fact, inappropriate in terms of host survival. In non-allergic asthma, the offending antigens and the vicious immunological cycle they elicit are still not fully understood. In susceptible individuals, long-term, repeated and marked inflammation may result in disturbed function (variable airway narrowing and hyperresponsiveness), and only then asthma, by definition, is diagnosed. This is more or less a late stage because the inflammation may periodically exist long before the functional changes appear. Chronic inflammation causes tissue injury, which is partly repaired between inflammatory exacerbations. Remodeling is developed during the cycle of injury and repair and gradually affects lung function. Remodeling seems to be the cause of more or less persistent airway hyperresponsiveness and fixed airway obstruction, which label moderate to severe, persistent asthma. Examination of bronchial tissue, even in mild asthma, shows lymphocytic inflammation enriched by eosinophils. In severe asthma, the predominant pattern of inflammation changes, with increase in the number of neutrophils and, in many, an extension of the changes to involve smaller airways (i.e., bronchioli). Structural alterations of bronchi already in mild asthma include epithelial fragility and some thickening of its reticular basement membrane. With increasing severity of asthma there may be increases in airway smooth muscle mass, neo-vascularisation, accumulation of interstitial collagen, and mucus-secreting glands. There is very little data to indicate that marked airway remodeling, already accompanied by clearly abnormal lung function could be reversed by any treatment. Early detection of the disease process and effective intervention with anti-inflammatory medication, especially with inhaled corticosteroids, remain the best option. Persistent asthma is usually accompanied by rhinitis, and treating both conditions improve the outcomes. Finally, most asthmatics have a relatively mild disease, which does not significantly affect their lung function or performance over the years.


Allergic Rhinitis Airway Inflammation Airway Smooth Muscle Allergy Clin Immunol Allergic Asthma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma. From broncho-constriction to airways inflammation and remodeling. Am J Respir Crit Care Med 2000, 161(5):1720–1745.PubMedGoogle Scholar
  2. 2.
    Mauad T, Bel EH, Sterk PJ. Asthma therapy and airway remodeling. J Allergy Clin Immunol 2007, 120:997–1009.PubMedCrossRefGoogle Scholar
  3. 3.
    Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, Ghiran S, Gerard NP, Yu C, Orkin SH et al. A critical role for eosinophils in allergic airways remodeling. Science 2004, 305(5691):1776–1779.PubMedCrossRefGoogle Scholar
  4. 4.
    Payne DN, Rogers AV, Adelroth E, Bandi V, Guntupalli KK, Bush A, Jeffery PK. Early thickening of the reticular basement membrane in children with difficult asthma. Am J Respir Crit Care Med 2003, 167(1):78–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Saglani S, Malmstrom K, Pelkonen AS, Malmberg LP, Lindahl H, Kajosaari M, Turpeinen M, Rogers AV, Payne DN, Bush A et al. Airway remodeling and inflammation in symptomatic infants with reversible airflow obstruction. Am J Respir Crit Care Med 2005, 171(7):722–727.PubMedCrossRefGoogle Scholar
  6. 6.
    Barbato A, Turato G, Baraldo S, Bazzan E, Calabrese F, Tura M, Zuin R, Beghe B, Maestrelli P, Fabbri LM et al. Airway inflammation in childhood asthma. Am J Respir Crit Care Med 2003, 168(7):798–803.PubMedCrossRefGoogle Scholar
  7. 7.
    Saglani S, Payne DN, Nicholson AG, Jeffery PK, Bush A. Thickening of the epithelial reticu-lar basement membrane in pre-school children with troublesome wheeze. American Thoracic Society 2005; San Diego, CA 2005: A515.Google Scholar
  8. 8.
    Saglani S, Payne DN, Zhu J, Wang Z, Nicholson AG, Bush A, Jeffery PK. Early detection of airway remodeling and eosinophilic inflammation in preschool wheezers. Am J Respir Crit Care Med 2007, 176:858–864.PubMedCrossRefGoogle Scholar
  9. 9.
    Rytila P, Metso T, Heikkinen K, Saarelainen P, Helenius IJ, Haahtela T. Airway inflammation in patients with symptoms suggesting asthma but with normal lung function. Eur Respir J 2000, 16(5):824–830.PubMedCrossRefGoogle Scholar
  10. 10.
    Bai TR, Cooper J, Koelmeyer T, Pare PD, Weir TD. The effect of age and duration of disease on airway structure in fatal asthma. Am J Respir Crit Care Med 2000, 162(2 Pt 1): 663–669.PubMedGoogle Scholar
  11. 11.
    Siddiqui S, Sutcliffe A, Shikotra A, Woodman L, Doe C, McKenna S, Wardlaw A, Bradding P, Pavord I, Brightling CE. Vascular remodeling is a feature of asthma and nonasthmatic eosinophilic bronchitis. J Allergy Clin Immunol 2007, 120:813–819.PubMedCrossRefGoogle Scholar
  12. 12.
    Balzar S, Wenzel SE, Chu HW. Transbronchial biopsy as a tool to evaluate small airways in asthma. Eur Respir J 2002, 20(2):254–259.PubMedCrossRefGoogle Scholar
  13. 13.
    Jeffery PK. Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 2004, 1(3):176–183.PubMedCrossRefGoogle Scholar
  14. 14.
    Laitinen LA, Laitinen A, Haahtela T, Vilkka V, Spur BW, Lee TH. Leukotriene E4 and granulocytic infiltration into asthmatic airways. Lancet 1993, 341(8851):989–990.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhu J, Qiu YS, Figueroa DJ, Bandi V, Galczenski H, Hamada K, Guntupalli KK, Evans JF, Jeffery PK. Localization and upregulation of cysteinyl leukotriene-1 receptor in asthmatic bronchial mucosa. Am J Respir Cell Mol Biol 2005, 33(6):531–540.PubMedCrossRefGoogle Scholar
  16. 16.
    Kariywasam HH, Aizen M, Barkans J, Robinson DS, Kay AB. Remodeling and airway hyperresponsiveness but not cellular inflammation persist after allergen challenge in asthma. Am J Respir Crit Care Med 2007, 175:896–904.CrossRefGoogle Scholar
  17. 17.
    Laitinen LA, Laitinen A, Haahtela T. Airway mucosal inflammation even in patients with newly diagnosed asthma. Am Rev Respir Dis 1993, 147(3):697–704.PubMedGoogle Scholar
  18. 18.
    Bourdin A, Neveu D, Vachier I, Paganin F, Godard P, Chanez P. Specificity of basement membrane thickening in severe asthma. J Allergy Clin Immunol 2007, 119:1367–1374.PubMedCrossRefGoogle Scholar
  19. 19.
    Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med 2002, 346(22):1699–1705.PubMedCrossRefGoogle Scholar
  20. 20.
    Okayama Y, Ra C, Saito H. Role of mast cells in airway remodeling. Curr Opin Immunol 2007, 57:197–203.Google Scholar
  21. 21.
    Holgate ST, Holloway J, Wilson S, Howarth PH, Haitchi HM, Babu S, Davies DE. J Allergy Clin Immunol 2006, 117:496–506.PubMedCrossRefGoogle Scholar
  22. 22.
    Togias A. Rhinitis and asthma: evidence for respiratory system integration. J Allergy Clin Immunol 2003, 111(6):1171–1183; quiz 1184.PubMedCrossRefGoogle Scholar
  23. 23.
    Gaga M, Lambrou P, Papageorgiou N, Koulouris NG, Kosmas E, Fragakis S, Sofios C, Rasidakis A, Jordanoglou J. Eosinophils are a feature of upper and lower airway pathology in non-atopic asthma, irrespective of the presence of rhinitis. Clin Exp Allergy 2000, 30(5):663–669.PubMedCrossRefGoogle Scholar
  24. 24.
    Jeffery PK, Haahtela T. Allergic rhinitis and asthma: inflammation in one-airway condition. BMC Pulm Med 2006, 6(Suppl 1):S5.PubMedCrossRefGoogle Scholar
  25. 25.
    Bousquet J, Jacot W, Vignola AM, Bachert C, Van Cauwenberge P. Allergic rhinitis: a disease remodeling the upper airways? J Allergy Clin Immunol 2004, 113(1):43–49.PubMedCrossRefGoogle Scholar
  26. 26.
    Braunstahl GJ, Fokkens WJ, Overbeek SE, KleinJan A, Hoogsteden HC, Prins JB. Mucosal and systemic inflammatory changes in allergic rhinitis and asthma: a comparison between upper and lower airways. Clin Exp Allergy 2003, 33(5):579–587.PubMedCrossRefGoogle Scholar
  27. 27.
    Bonay M, Neukirch C, Grandsaigne M, Lecon-Malas V, Ravaud P, Dehoux M, Aubier M. Changes in airway inflammation following nasal allergic challenge in patients with seasonal rhinitis. Allergy 2006, 61(1):111–118.PubMedCrossRefGoogle Scholar
  28. 28.
    Braunstahl GJ, Kleinjan A, Overbeek SE, Prins JB, Hoogsteden HC, Fokkens WJ. Segmental bronchial provocation induces nasal inflammation in allergic rhinitis patients. Am J Respir Crit Care Med 2000, 161(6):2051–2057.PubMedGoogle Scholar
  29. 29.
    Braunstahl GJ, Overbeek SE, Fokkens WJ, Kleinjan A, McEuen AR, Walls AF, Hoogsteden HC, Prins JB. Segmental bronchoprovocation in allergic rhinitis patients affects mast cell and basophil numbers in nasal and bronchial mucosa. Am J Respir Crit Care Med 2001, 164(5):858–865.PubMedGoogle Scholar
  30. 30.
    Melen E, Bruce S, Doekes G, Kabesch M, Laitinen T, Lauener R, Lindgren CM, Riedler J, Scheynius A, van Hage-Hamsten M et al. Haplotypes of G protein-coupled receptor 154 are associated with childhood allergy and asthma. Am J Respir Crit Care Med 2005, 171(10):1089–1095.PubMedCrossRefGoogle Scholar
  31. 31.
    Togias A. Systemic effects of local allergic disease. J Allergy Clin Immunol 2004, 113 (1 Suppl):S8–14.PubMedCrossRefGoogle Scholar
  32. 32.
    Pin I, Gibson PG, Kolendowicz R, Girgis-Gabardo A, Denburg JA, Hargreave FE, Dolovich J. Use of induced sputum cell counts to investigate airway inflammation in asthma 1992, 47:25–29.Google Scholar
  33. 33.
    Spallarossa D, Battistini E, Silvestri M, Sabatini F, Fregonese L, Brazzola G, Rossi GA. Steroid-naive adolescents with mild intermittent allergic asthma have airway hyperresponsiveness and elevated exhaled nitric oxide levels. J Asthma 2003, 40(3):301–310.PubMedCrossRefGoogle Scholar
  34. 34.
    Bisgaard H, Loland L, Oj JA. NO in exhaled air of asthmatic children is reduced by the leukotriene receptor antagonist montelukast. Am J Respir Crit Care Med 1999, 160(4):1227–1231.PubMedGoogle Scholar
  35. 35.
    Buchvald F, Baraldi E, Carraro S, Gaston B, De Jongste J, Pijnenburg MW, Silkoff PE, Bisgaard H. Measurements of exhaled nitric oxide in healthy subjects aged 4 to 17 years. J Allergy Clin Immunol 2005, 115(6):1130–1136.PubMedCrossRefGoogle Scholar
  36. 36.
    Buchvald F, Eiberg H, Bisgaard H. Heterogeneity of FeNO response to inhaled steroid in asthmatic children. Clin Exp Allergy 2003, 33(12):1735–1740.PubMedCrossRefGoogle Scholar
  37. 37.
    Malmberg LP, Petäys T, Haahtela T, Laatikainen T, Jousilahti P, Vartiainen E, Mäkelä MJ. Exhaled nitric oxide in healthy nonatopic school-age children: determinants and height-adjusted reference values. Pediatr Pulmonol 2006, 41:635–642.PubMedCrossRefGoogle Scholar
  38. 38.
    Busse WW, Wanner A, Adams K, Reynolds HY, Castro M, Chowdhury B, Kraft M, Levine RJ, Peters SP, Sullivan EJ. Investigative bronchoprovocation and bronchoscopy in airway diseases. Am J Respir Crit Care Med 2005, 172(7):807–816.PubMedCrossRefGoogle Scholar
  39. 39.
    Jeffery P, Holgate S, Wenzel S. Methods for the assessment of endobronchial biopsies in clinical research: application to studies of pathogenesis and the effects of treatment. Am J Respir Crit Care Med 2003, 168(6 Pt 2):S1–17.PubMedCrossRefGoogle Scholar
  40. 40.
    Sont JK, Willems LN, Bel EH, vanKrieken JH, Vandenbroucke JP, Sterk PJ. Clinical control and histopathologic outcome of asthma when using airway hyperresponsiveness as an additional guide to long-term treatment. The AMPUL Study Group. Am J Respir Crit Care Med 1999, 159:1043–1051.PubMedGoogle Scholar
  41. 41.
    Ward C, Pais M, Bish R, Reid D, Feltis B, Johns D, Walters EH. Airway inflammation, basement membrane thickening and bronchial hyperresponsiveness in asthma. Thorax 2002, 57(4):309–316.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee SY, Kim JS, Lee JM, Kwon SS, Kim KH, Moon HS, Song JS, Park SH, Kim YK. Inhaled corticosteroid prevents the thickening of airway smooth muscle in murine model of chronic asthma. Pulm Pharmacol Ther 2008, 21:17–9.Google Scholar
  43. 43.
    Goleva E, Hauk PJ, Boguniewicz J, Martin RJ, Leung DY. Airway remodeling and lack of bron-chodilator response in steroid-resistant asthma. J Allergy Clin Immunol 2007, 120:1065–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Pizzichini E, Leff JA, Reiss TF, Hendeles L, Boulet LP, Wei LX, Efthimiadis AE, Zhang J, Hargreave FE. Montelukast reduces airway eosinophilic inflammation in asthma: a randomized, controlled trial. Eur Respir J 1999, 14(1):12–18.PubMedCrossRefGoogle Scholar
  45. 45.
    Nakamura Y, Hoshino M, Sim JJ, Ishii K, Hosaka K, Sakamoto T. Effect of the leukotriene receptor antagonist pranlukast on cellular infiltration in the bronchial mucosa of patients with asthma. Thorax 1998, 53(10):835–841.PubMedCrossRefGoogle Scholar
  46. 46.
    Jeffery PK. The roles of leukotrienes and the effects of leukotriene receptor antagonists in the inflammatory response and remodelling of allergic asthma. Clin Exp Allergy Rev 2001, 1(2):148–153.CrossRefGoogle Scholar
  47. 47.
    Panettieri RA, Tan EM, Ciocca V, Luttmann MA, Leonard TB, Hay DW. Effects of LTD4 on human airway smooth muscle cell proliferation, matrix expression, and contraction in vitro: differential sensitivity to cysteinyl leukotriene receptor antagonists. Am J Respir Cell Mol Biol 1998, 19(3):453–461.PubMedGoogle Scholar
  48. 48.
    Parameswaran K, Cox G, Radford K, Janssen LJ, Sehmi R, O'Byrne PM. Cysteinyl leukotrienes promote human airway smooth muscle migration. Am J Respir Crit Care Med 2002, 166(5):738–742.PubMedCrossRefGoogle Scholar
  49. 49.
    Gueders MM, Bertholet P, Perin F, Rocks N, Maree R, Botta V, Louis R, Foidart JM, Noel A, Evrard B, Cataldo DD. A novel formulation of inhaled doxycycline reduces allergen-induced inflammation, hyperresponsiveness and remodeling by matrix metalloproteinases and cytokines modulation in a mouse model of asthma. Biochem Pharmacol 2008, 75:514–26.PubMedCrossRefGoogle Scholar
  50. 50.
    Jain VV, Kitagaki K, Businga T, Hussain I, George C, O'Shaughnessy P, Kline JN. CpG-oligodeoxynucleotides inhibit airway remodeling in a murine model of chronic asthma. J Allergy Clin Immunol 2002, 110:867–872.PubMedCrossRefGoogle Scholar
  51. 51.
    Camateros P, Tamaoka M, Hassan M, Marino R, Moisan J, Marion D, Guiot MC, Martin JG, Radzioch D. Chronic asthma-induced airway remodeling is prevented by toll-like receptor-7/8 ligand S28463. Am J Respir Crit Care Med 2007, 175:1241–1249.PubMedCrossRefGoogle Scholar
  52. 52.
    Busse WW, Massanari M, Kianifard F, Geba GP. Effect of omalizumab on the need for rescue systemic corticosteroid treatment in patients with moderate-to-severe persistent IgE-mediated allergic asthma: a pooled analysis. Curr Med Res Opin 2007, 23:2379–2386.PubMedCrossRefGoogle Scholar
  53. 53.
    Howarth PH, Babu KS, Arshad HS, Lau L, Buckley M, McConnell W, Beckett P, Al Ali M, Chauhan A, Wilson SJ, Reynolds A, Davies DE, Holgate ST. Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax 2005, 60:1012–1018.PubMedCrossRefGoogle Scholar
  54. 54.
    Cox G, Thomson NC, Rubin AS, Niven RM, Corris PA, Siersted HC, Olivenstein R, Pavord ID, McCormack D, Chaudhuri R, Miller JD, Laviolette M. AIR Trial Study Group. Asthma control during the year after bronchial thermoplasty. N Engl J Med 2007, 356:1327–1337.PubMedCrossRefGoogle Scholar
  55. 55.
    Lange P, Scharling H, Ulrik CS, Vestbo J. Inhaled corticosteroids and decline of lung function in community residents with asthma. Thorax 2006, 61:100–104.PubMedCrossRefGoogle Scholar
  56. 56.
    Haahtela T, Jarvinen M, Kava T, Kiviranta K, Koskinen S, Lehtonen K, Nikander K, Persson T, Reinikainen K, Selroos O et al. Comparison of a beta 2-agonist, terbutaline, with an inhaled corticosteroid, budesonide, in newly detected asthma. N Engl J Med 1991, 325(6):388–392.PubMedCrossRefGoogle Scholar
  57. 57.
    Haahtela T, Jarvinen M, Kava T, Kiviranta K, Koskinen S, Lehtonen K, Nikander K, Persson T, Selroos O, Sovijarvi A et al. Effects of reducing or discontinuing inhaled budesonide in patients with mild asthma. N Engl J Med 1994, 331(11):700–705.PubMedCrossRefGoogle Scholar
  58. 58.
    Agertoft L, Pedersen S. Effects of long-term treatment with an inhaled corticosteroid on growth and pulmonary function in children. Respir Med 1994, 88:373–381.PubMedCrossRefGoogle Scholar
  59. 59.
    Selroos O, Pietinalho A, Löfroos AB, Riska H. Effect of early vs. late intervention with inhaled corticosteroid in asthma. Chest 1995, 108:1228–1234.PubMedCrossRefGoogle Scholar
  60. 60.
    Long-term effects of budesonide or nedocromil in children with asthma. The Childhood Asthma Management Program Research Group. N Engl J Med 2000, 343:1054–1063.Google Scholar
  61. 61.
    O'Byrne P, Pedersen S, Busse WW, Tan WC, Chen Y-Z, Ohlsson SV, Ullman A, Lamm CJ, Pauwels RA. Effects of early intervention with inhaled budesonide on lung function in newly diagnosed asthma. Chest 2006, 129:1478–1485.PubMedCrossRefGoogle Scholar
  62. 62.
    Smith AD, Cowan JO, Brasset KP, Herbison GP, Taylor DR. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Engl J Med 2005, 352:2163–2173.PubMedCrossRefGoogle Scholar
  63. 63.
    Haahtela T, Tuomisto LE, Pietinalho A, Klaukka T, Erhola M, Kaila M, Nieminen MM, Kontula E, Laitinen LA. A ten-year asthma programme in Finland: a major change for the better. Thorax 2006, 61:663–670.PubMedCrossRefGoogle Scholar
  64. 64.
    Pavord ID, Ward R, Woltmann G, Wardlaw AJ, Sheller JR, Dworski R. Induced sputum eicosanoid concentrations in asthma. Am J Respir Crit Care Med 1999, 160(6):1905–1909.PubMedGoogle Scholar
  65. 65.
    Vaquerizo MJ, Casan P, Castillo J, Perpina M, Sanchis J, Sobradillo V, Valencia A, Verea H, Viejo JL, Villasante C et al. Effect of montelukast added to inhaled budesonide on control of mild to moderate asthma. Thorax 2003, 58(3):204–210.PubMedCrossRefGoogle Scholar
  66. 66.
    Bjermer L, Bisgaard H, Bousquet J, Fabbri LM, Greening AP, Haahtela T, Holgate ST, Picado C, Menten J, Dass SB et al. Montelukast and fluticasone compared with salmeterol and fluticasone in protecting against asthma exacerbation in adults: one year, double blind, randomised, comparative trial. BMJ 2003, 327(7420):891.PubMedCrossRefGoogle Scholar
  67. 67.
    Bousquet J, Van Cauwenberge P, Khaltaev N. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol 2001, 108(5 Suppl):S147–334.PubMedCrossRefGoogle Scholar
  68. 68.
    Johansson SG, Haahtela T. World Allergy Organization Guidelines for Prevention of Allergy and Allergic Asthma. Condensed Version. Int Arch Allergy Immunol 2004, 135(1):83–92.PubMedCrossRefGoogle Scholar
  69. 69.
    Haahtela T, Tamminen K, Malmberg LP, Zetterström O, Karjalainen J, Ylä-Outinen H, Svahn T, Ekström T, Selroos O. Formoterol as needed with or without budesonide in patients with intermittent asthma and raised NO levels in exhaled air: a SOMA study. Eur Respir J 2006, 28:748–755.PubMedCrossRefGoogle Scholar
  70. 70.
    Holgate S, Bisgaard H, Bjermer L, Haahtela T, Haughney J, Horne R. McIvor A, Palkonen S, Price DB, Thomas M, Valovirta E, Wahn U. The Brussels Declaration: the need for change in asthma management. Eur Respir J 2008, 32:1433–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Tari Haahtela
    • 1
  1. 1.Professor of Clinical Allergology, Skin and Allergy HospitalHelsinki University Central HospitalHUSFinland

Personalised recommendations