Advertisement

Cold, Dry Air, and Hyperosmolar Challenges in Rhinitis

  • Paraya Assanasen
  • Robert M. Naclerio
Part of the Allergy Frontiers book series (ALLERGY, volume 3)

Keywords

Nasal Mucosa Allergy Clin Immunol Ipratropium Bromide Nasal Secretion Epithelial Line Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Togias A (1998) Non-allergic rhinitis. In: Mygind N, Naclerio R, Durham S (eds) Rhinitis. Marcel Dekker, New York, pp 383–399Google Scholar
  2. 2.
    Braat J, Mulder P, Fokkens W, van Wijk R, Rijntjes E (1998) Intranasal cold dry air is superior to histamine challenge in determining the presence and degree of nasal hyperreactivity in nonallergic noninfectious perennial rhinitis. Am J Respir Crit Care Med 157:1748–1755PubMedGoogle Scholar
  3. 3.
    Kauffmann F, Neukirch F, Annesi I, Korobaeff M, Dore MF, Lellouch J (1988) Relation of perceived nasal and bronchial hyperresponsiveness to FEV1, basophil counts, and methacholine response. Thorax 43:456–461PubMedCrossRefGoogle Scholar
  4. 4.
    Diemer F, Sanico A, Horowitz E, Togias A (1999) Non-allergenic inhalant triggers in seasonal and perennial allergic rhinitis. J Allergy Clin Immunol 103:S2Google Scholar
  5. 5.
    Togias AG, Proud D, Lichtenstein LM, Adams GK, Norman PS, Kagey-Sobotka A, Naclerio RM (1988) The osmolality of nasal secretions increases when inflammatory mediators are released in response to inhalation of cold, dry air. Am Rev Respir Dis 137(3):625–629PubMedGoogle Scholar
  6. 6.
    Jankowski R, Philip G, Togias AG, Naclerio RM (1993) Demonstration of bilateral cholinergic secretory response after unilateral nasal cold, dry air challenge. Rhinology 31:97–100PubMedGoogle Scholar
  7. 7.
    Philip G, Jankowski R, Baroody F, Naclerio RM, Togias AG (1993) Reflex activation of nasal secretion by unilateral inhalation of cold, dry air. Am Rev Respir Dis 148:1616–1622PubMedGoogle Scholar
  8. 8.
    Slome D (1956) Physiology of nasal circulation. Sci Basis Med 5:451–468Google Scholar
  9. 9.
    Änggärd A (1974) The effects of parasympathetic nerve stimulation on the microcirculation and secretion in the nasal mucosa of the cat. Acta Otolaryngol 78:98–105PubMedCrossRefGoogle Scholar
  10. 10.
    Eccles R, Wilson H (1974) The autonomic innervation of the nasal blood vessels of the cat. J Physiol (Lond) 238:549–560Google Scholar
  11. 11.
    Gadlage R, Behnke EE, Jackson RT (1975) Is the vidian nerve cholinergic? Arch Otolaryngol 101:422–425PubMedGoogle Scholar
  12. 12.
    Ingelstedt S (1956) Studies on the conditioning of air in the respiratory tract. Acta Otolaryngol Suppl 131:1–80PubMedGoogle Scholar
  13. 13.
    Ingelstedt S (1970) Humidifying capacity of the nose. Ann Otol Rhinol Laryngol 79:475–480PubMedGoogle Scholar
  14. 14.
    Cole P (1953) Some aspects of temperature, moisture and heat relationships in the upper respiratory tract. J Laryngol Otol 67:449–456PubMedGoogle Scholar
  15. 15.
    Hanna LM, Scherer PW (1986) A theoretical model of localized heat and water vapor transport in the human respiratory tract. J Biomech Eng 108:19–27PubMedCrossRefGoogle Scholar
  16. 16.
    McFadden ER Jr, Pichurko BM, Bowman HF, Ingenito E, Burns S, Dowling N, Solway J (1985) Thermal mapping of the airways in humans. J Appl Physiol 58:564–570PubMedCrossRefGoogle Scholar
  17. 17.
    Tsai C-L, Saidel GM, McFadden ER Jr, Fouke JM (1990) Radial heat and water transport across the airway wall. J Appl Physiol 69:222–231PubMedGoogle Scholar
  18. 18.
    Annesi I, Neukirch F, Orvoen-Frija E, Oryszczyn MP, Korobaeff M, Dore MF, Kauffmann F (1987) The relevance of hyperresponsiveness but not of atopy to FEV1 decline: preliminary results in a working population. Bull Eur Physiopath Resp 23:397–400Google Scholar
  19. 19.
    Griffin MP, McFadden ER Jr, Ingram RH Jr (1982) Airway cooling in asthmatic and nonasthmatic subjects during nasal and oral breathing. J Allergy Clin Immunol 69:354–359PubMedCrossRefGoogle Scholar
  20. 20.
    Laine MT, Huggare JAV, Ruoppi P (1994) A modification of the pressure-flow technique for measuring breathing of cold air and its effect on nasal cross-sectional area. Dentofac Orthop 105:265–269CrossRefGoogle Scholar
  21. 21.
    Gusi B, Krajina Z, Larie J (1969) Damage of the respiratory mucous membrane of rats exposed to cold. Acta Otolaryngol (Stockh) 57:343Google Scholar
  22. 22.
    Jeffery PK, Godfrey RW, Adelroth E, Nelson F, Rogers A, Johansson SA (1992) Effects of treatment on airway inflammation and thickening of basement membrane reticular collagen in asthma. Am Rev Respir Dis 145:890–899PubMedGoogle Scholar
  23. 23.
    Namimatsu A, Go K, Hata T (1991) Nasal mucosal hypersensitivity in guinea pigs intermit-tingly exposed to cold. Intl Arch Allergy Appl Immunol 96:107–112Google Scholar
  24. 24.
    Cole P (1954) Respiratory mucosal vascular responses, air conditioning and thermo regulation. J Laryngol Otol 68:613–622PubMedGoogle Scholar
  25. 25.
    Cauna N (1970) The fine structure of the arteriovenous anastomosis and its nerve supply in the human nasal respiratory mucosa. Anat Rec 168:9–21PubMedCrossRefGoogle Scholar
  26. 26.
    Cauna N, Cauna D (1975) The fine structure and innervation of the cushion veins of the human nasal respiratory mucosa. Anat Rec 181:1–16PubMedCrossRefGoogle Scholar
  27. 27.
    Tos M (1982) Goblet cells and glands in the nose and paranasal sinuses. In: Proctor DF, Andersen IB (eds) The nose: upper airway physiology and the atmospheric environment. Elsevier Biomedical, Amsterdam, The Netherlands, pp 99–144Google Scholar
  28. 28.
    Cauna N (1982) Blood and nerve supply of the nasal lining. In: Proctor DF, Andersen IB (eds) The nose. Elsevier Biomedical, Oxford, pp 44–169Google Scholar
  29. 29.
    Ingelstedt S, Ivstam B (1949) The source of nasal secretion in infectious, allergic, and experimental conditions. Acta Otolaryngol 37:451–455CrossRefGoogle Scholar
  30. 30.
    Yankaskas JR, Gatzy JT, Boucher RC (1987) Effects of raised osmolarity on canine tracheal epithelial ion transport function. J Appl Physiol 62:2241–2245PubMedGoogle Scholar
  31. 31.
    Knowles, MR, Clark CE, Fischer ND (1983) Nasal secretions: role of epithelial ion transport. In: Mygind N, Pipkorn U (eds) Allergic and vasomotor rhinitis: pathophysiological aspects. Munksgaard, Copenhagen, pp 77–90Google Scholar
  32. 32.
    Welsh MJ (1987) Electrolyte transport by airway epithelia. Physiol Rev 67:1143–1184PubMedGoogle Scholar
  33. 33.
    Boucher RC, Cheng EH, Paradiso AM, Stutts MJ, Knowles MR, Earp HS (1989) Chloride secretory response of cystic fibrosis human airway epithelia. Preservation of calcium but not protein kinase C- and A-dependent mechanisms. J Clin Invest 84:1424–1431PubMedGoogle Scholar
  34. 34.
    Cruz AA, Togias AG, Lichtenstein LM, Kagey-Sobotka A, Proud D, Naclerio RM (1991) Steroid-induced reduction of histamine release does not alter the clinical nasal response to cold, dry air. Am Rev Respir Dis 143:761–765PubMedGoogle Scholar
  35. 35.
    Cruz AA, Togias AG, Lichtenstein LM, Kagey-Sobotka A, Proud D, Naclerio RM (1992) Local application of atropine attenuates the upper airway reaction to cold, dry air. Am Rev Respir Dis 146:340–346PubMedGoogle Scholar
  36. 36.
    Togias AG, Naclerio RM, Proud D, Fish JE, Adkinson NF Jr, Kagey-Sobotka A, Norman P, Lichtenstein LM (1985) Nasal challenge with cold, dry air results in release of inflammatory mediators: possible mast cell involvement. J Clin Invest 76:1375–1381PubMedCrossRefGoogle Scholar
  37. 37.
    Togias AG, Lykens K, Kagey-Sobotka A, Eggleston PA, Proud D, Lichtenstein LM, Naclerio RM (1990) Studies on the relationships between sensitivity to cold, dry air, hyperosmolal solutions, and histamine in the adult nose. Am Rev Respir Dis 141:1428–1433PubMedGoogle Scholar
  38. 38.
    Togias AG, Proud D, Lichtenstein LM, Naclerio RM (1991) Hot, dry air is more potent stimulus than cold, dry air for causing rhinitis and for increasing the osmolality of nasal secretions. Allergy Clin Immunol News (Suppl. 1):114Google Scholar
  39. 39.
    Cruz AA, Naclerio RM, Proud D, Togias A (2006) Epithelial shedding is associated with nasal reactions to cold, dry air. J Allergy Clin Immunol 117:1351–1358PubMedCrossRefGoogle Scholar
  40. 40.
    Naclerio RM, Meier HL, Kagey-Sobotka A, Adkinson NF Jr, Meyers DA, Norman PS, Lichtenstein LM (1983) Mediator release after nasal airway challenge with allergen. Am Rev Respir Dis 128:597–602PubMedGoogle Scholar
  41. 41.
    Braat JP, Mulder PG, Fokkens WJ, van Wijk RG, Rijntjes E (1998) Intranasal cold dry air is superior to histamine challenge in determining the presence and degree of nasal hyperreactivity in nonallergic noninfectious perennial rhinitis. Am J Respir Crit Care Med 157:1748–1755PubMedGoogle Scholar
  42. 42.
    Silber G, Proud D, Warner J, Naclerio RM, Kagey-Sobotka A, Lichtenstein LM, Eggleston P (1988) In vivo release of inflammatory mediators by hyperosmolar solutions. Am Rev Respir Dis 137:606–612PubMedGoogle Scholar
  43. 43.
    Krayenbuhl MC, Hudspith BN, Scadding GK, Brostoff J (1988) Nasal response to allergen and hyperosmolar challenge. Clin Allergy 18:157–164PubMedCrossRefGoogle Scholar
  44. 44.
    Baraniuk JN, Ali M, Yuta A, Fang SY, Naranch K (1999) Hypertonic saline nasal provocation stimulates nociceptive nerves, substance P release, and glandular mucous exocytosis in normal humans. Am J Respir Crit Care Med 160:655–662PubMedGoogle Scholar
  45. 45.
    Lai G, Philip G, Togias A (1996) The nasal response to hyperosmolar saline is inhibited by capsaicin treatment. J Allergy Clin Immunol 97:A431CrossRefGoogle Scholar
  46. 46.
    Sanico AM, Philip G, Lai GK, Togias A (1999) Hyperosmolar saline induces reflex nasal secretions, evincing neural hyperresponsiveness in allergic rhinitis. J Appl Physiol 86:1202–1210PubMedCrossRefGoogle Scholar
  47. 47.
    Andersson M, Greiff L, Svensson C, Persson C (1995) Various methods for testing nasal responses in vivo: a critical review. Acta Otolaryngol Stockh 115:705–713PubMedCrossRefGoogle Scholar
  48. 48.
    Naclerio RM, Proud D, Kagey-Sobotka A, Lichtenstein LM, Togias A (1995) Cold dry air- induced rhinitis: effect of inhalation and exhalation through the nose. J Appl Physiol 79:467–471PubMedGoogle Scholar
  49. 49.
    Proud D, Bailey GS, Naclerio RM, Reynolds CJ, Cruz AA, Eggleston PA, Lichtenstein LM, Togias AG (1992) Tryptase and histamine as markers to evaluate mast cell activation during the responses to nasal challenge with allergen, cold, dry air, and hyperosmolar solutions. J Allergy Clin Immunol 89:1098–1110PubMedCrossRefGoogle Scholar
  50. 50.
    Eggleston PA, Kagey-Sobotka A, Schleimer RP, Lichtenstein LM (1984) Interaction between hyperosmolar and IgE-mediated histamine release from basophils and mast cells. Am Rev Respir Dis 130:86–91PubMedGoogle Scholar
  51. 51.
    Eggleston PA, Kagey-Sobotka A, Lichtenstein LM (1987) A comparison of the osmotic activation of basophils and human lung mast cells. Am Rev Respir Dis 135:1043–1048PubMedGoogle Scholar
  52. 52.
    Hanes LS, Issa E, Proud D, Togias A (2006) Stronger nasal responsiveness to cold air in individuals with rhinitis and asthma, compared with rhinitis alone. Clin Exp Allergy 36:26–31PubMedCrossRefGoogle Scholar
  53. 53.
    Togias AG, Naclerio RM, Peters SP, Nimmagadda I, Proud D, Kagey-Sobotka A, Adkinson NF Jr, Norman PS, Lichtenstein LM (1986) Local generation of sulfidopeptide leukotrienes upon nasal provocation with cold, dry air. Am Rev Respir Dis 133:1133–1137PubMedGoogle Scholar
  54. 54.
    Iliopoulos O, Proud D, Norman PS, Lichtenstein LM, Kagey-Sobotka A, Naclerio RM (1988) Nasal challenge with cold, dry air induces a late-phase reaction. Am Rev Respir Dis 138:400–405PubMedGoogle Scholar
  55. 55.
    Rouadi P, Baroody FM, Abbott D, Naureckas E, Solway J, Naclerio RM (1999) A technique to measure the ability of the human nose to warm and humidify air. J Appl Physiol 87:400–406PubMedGoogle Scholar
  56. 56.
    Proctor D, Andersen IB, Lundqvist GR (1977) Human nasal mucosa function at controlled temperatures. Respir Physiol 30:109–124PubMedCrossRefGoogle Scholar
  57. 57.
    Keck T, Leiacker R, Riechelmann H, Rettinger G (2000) Temperature profile in the nasal cavity. Laryngoscope 110:651–654PubMedCrossRefGoogle Scholar
  58. 58.
    Cole P (1954) Recordings of respiratory air temperature. J Laryngol Otol 68:295–307PubMedGoogle Scholar
  59. 59.
    Grayson J (1990) Responses of the microcirculation to hot and cold environments. In: Schonbaum E, Lomax P (eds) Thermoregulation: physiology and biochemistry. Pergamon, New York, pp 221–234Google Scholar
  60. 60.
    Assanasen P, Baroody FM, Haney L, deTineo M, Naureckas E, Solway J, Naclerio RM (2003) Elevation of the nasal mucosal surface temperature after warming of the feet occurs via a neural reflex. Acta Otolaryngol 123:627–636PubMedGoogle Scholar
  61. 61.
    Abbott DJ, Baroody FM, Naureckas E, Naclerio RM (2001) Elevation of nasal mucosal temperature increases the ability of the nose to warm and humidify air. Am J Rhinol 15:41–45PubMedCrossRefGoogle Scholar
  62. 62.
    Pinto JM, Assanasen P, Baroody FM, Naureckas E, Naclerio RM (2005) Alpha-adrenoreceptor blockade with phenoxybenzamine does not affect the ability of the nose to condition air. J Appl Physiol 99:128–133PubMedCrossRefGoogle Scholar
  63. 63.
    Assanasen P, Baroody FM, Naureckas E, Solway J, Naclerio RM (2001) Supine position decreases the ability of the nose to warm and humidify air. J Appl Physiol 91:2459–2465PubMedGoogle Scholar
  64. 64.
    Assanasen P, Baroody FM, Abbott DJ, Naureckas E, Solway J, Naclerio RM (2000) Natural and induced allergic responses increase the ability of the nose to warm and humidify air. J Allergy Clin Immunol 106:1045–1052PubMedCrossRefGoogle Scholar
  65. 65.
    Rozsasi A, Leiacker R, Keck T (2004) Nasal conditioning in perennial allergic rhinitis after nasal allergen challenge. Clin Exp Allergy 34:1099–1104PubMedCrossRefGoogle Scholar
  66. 66.
    Pinto JM, Assanasen P, Baroody FM, Naureckas E, Solway J, Naclerio RM (2004) Treatment of nasal inflammation decreases the ability of subjects with asthma to condition inspired air. Am J Respir Crit Care Med 170:863–869PubMedCrossRefGoogle Scholar
  67. 67.
    Assanasen P, Baroody FM, Naureckas E, Solway J, Naclerio RM (2001) The nasal passage of subjects with asthma has a decreased ability to warm and humidify inspired air. Am J Respir Crit Care Med 164:1640–1646PubMedGoogle Scholar
  68. 68.
    Baroody FM, Majchel AM, Roecker MM, Roszko PJ, Zegarelli EC, Wood CC, Naclerio RM (1992) Ipratropium bromide (Atrovent nasal spray) reduces the nasal response to methacholine. J Allergy Clin Immunol 89:1065–1075PubMedCrossRefGoogle Scholar
  69. 69.
    Ingelstedt S and Ivstam B (1951) Study in the humidifying capacity of the nose. Acta Otolaryngol 39:286–290PubMedCrossRefGoogle Scholar
  70. 70.
    Drettner B, Falck B, Simon H (1977) Measurements of the air conditioning capacity of the nose during normal and pathological conditions and pharmacological influence. Acta Otolaryngol 84:266–277PubMedCrossRefGoogle Scholar
  71. 71.
    Kumlien J, Drettner B (1985) The effect of ipratropium bromide (Atrovent) on the air conditioning capacity of the nose. Clin Otolaryngol Allied Sci 10:165–168PubMedCrossRefGoogle Scholar
  72. 72.
    Assanasen P, Baroody FM, Rouadi P, Naureckas E, Solway J, Naclerio RM (2000) Ipratropium bromide increases the ability of the nose to warm and humidify air. Am J Respir Crit Care Med 162:1031–1037PubMedGoogle Scholar
  73. 73.
    Togias AG, Naclerio RM, Warner J, Proud D, Kagey-Sobotka A, Nimmagadda I, Norman PS, Lichtenstein LM (1986) Demonstration of inhibition of mediator release from human mast cells by azatadine base. In vivo and in vitro evaluation. JAMA 255:225–229Google Scholar
  74. 74.
    Togias AG, Proud D, Kagey-Sobotka A, Norman P, Lichtenstein L, Naclerio RM (1987) The effect of a topical tricyclic antihistamine on the response of the nasal mucosa to challenge with cold, dry air and histamine. J Allergy Clin Immunol 79:599–604PubMedCrossRefGoogle Scholar
  75. 75.
    Van Rijswijk JB, Boeke EL, Keizer JM, Mulder PG, Blom H M, Fokkens WJ (2003) Intranasal capsaicin reduces nasal hyperreactivity in idiopathic rhinitis: a double-blind randomized application regimen study. Allergy 58:754–761PubMedCrossRefGoogle Scholar
  76. 76.
    Silvers WS (1991) The skier's nose: model of cold-induced rhinorrhea. Ann Allergy 67:32–36PubMedGoogle Scholar
  77. 77.
    Sahin-Yilmaz A, Pinto JM, deTineo M, Elwany S, Naclerio RM (2007) Familial aggregation of nasal conditioning capacity. J Appl Physiol 103:1078–1081PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Paraya Assanasen
    • 1
  • Robert M. Naclerio
    • 2
  1. 1.The Department of Otorhinolaryngology, Faculty of Medicine, Siriraj HospitalMahidol UniversityBangkokThailand
  2. 2.Professor and Chief, Section of Otolaryngology-Head and Neck SurgeryThe University of ChicagoChicagoUSA

Personalised recommendations