Skip to main content

Allergic Rhinitis and Conjunctivitis: Update on Pathophysiology

  • Chapter
Allergy Frontiers: Clinical Manifestations

Part of the book series: Allergy Frontiers ((ALLERGY,volume 3))

Abstract

Our understanding of the development and mechanism(s) of allergic diseases has changed dramatically over the last 20 years. With the advent of genetic studies it has now become clear that the linear model, as defined by the allergic march, is no longer tenable. Instead, we must consider all allergies as complex multi-compartment models in which genes which control IgE production and also genes which govern other aspects of allergic disease, such as epithelium integrity, both play an important role. To explore such possibilities, this chapter asks four questions:

1. Is there any evidence of an abnormality in the conjunctival or nasal mucosa which would allow increased allergen penetration? Epithelial changes which are likely to facilitate allergen penetration are present in both allergic conjunctivitis and rhinitis, but they appear different. For example, epithelial PAR-2 expression is elevated in allergic rhinitis whereas in seasonal allergic conjunctivitis, many structural proteins, including E-cadherin, CD44, desmosomes, keratins K5/6, K7, K8, K13, K14, K18 and PAR-2 are all reduced. 2. What is known about the immunology of sensitization in allergic conjunctivitis and allergic rhinitis? Clearly, great strides are being made with respect to the biology of dendritic cells and T regulatory cells and to the possibility of local IgE production, but there is little evidence to suggest differences between the mechanisms of sensitization in the eye and nose. 3. What is the pattern of mediator release in the immediate allergic response and the development of allergic inflammation in allergic conjunctivitis and allergic rhinitis? The pattern of the early phase allergic response in the eye and nose seem similar. While an eosinophil dominated late phase response and allergic inflammation are present in allergic rhinitis, they are only present in the more severe forms of allergic conjunctivitis such as AKC and VKC. 4. Is there any evidence for clinically relevant persistent inflammation or organ remodelling in allergic conjunctivitis and allergic rhinitis? A sustained inflammation and tissue remodelling are well established in the lower airways in asthma where they contribute significantly to the symptoms. However, in upper airways, although there do appear to be functional changes in sensory neurone structure and function in the nose during prolonged allergen exposure, tissue damage seems to be more limited and overt remodelling does not appear to occur in allergic conjunctivitis and is questionable in allergic rhinitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blumenthal MN, Amos DB. Genetic and immunologic basis of atopic responses. Chest 1987;91:176S–84S.

    Article  PubMed  CAS  Google Scholar 

  2. Wahn U. What drives the allergic march? Allergy 2000;55:591–9.

    Article  PubMed  CAS  Google Scholar 

  3. ETAC Study Group. Allergic factors associated with the development of asthma and the influence of cetirizine in a double-blind, randomised, placebo-controlled trial: first results of ETAC. Early Treatment of the Atopic Child. Pediatr Allergy Immunol 1998;9:116–24.

    Article  Google Scholar 

  4. Warner JO. Future aspects of pharmacological treatment to inhibit the allergic march. Pediatr Allergy Immunol 2001;12(Suppl 14):102–7.

    Article  PubMed  Google Scholar 

  5. Walley AJ, Chavanas S, Moffatt MF, Esnouf RM, Ubhi B, Lawrence R, et al. Gene polymorphism in Netherton and common atopic disease. Nat Genet 2001;29:175–8.

    Article  PubMed  CAS  Google Scholar 

  6. Kato A, Fukai K, Oiso N, Hosomi N, Murakami T, Ishii M. Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population. Br J Dermatol 2003;148:665–9.

    Article  PubMed  CAS  Google Scholar 

  7. Moffatt MF. SPINK5: a gene for atopic dermatitis and asthma. Clin Exp Allergy 2004;34:325–7.

    Article  PubMed  CAS  Google Scholar 

  8. Allen M, Heinzmann A, Noguchi E, Abecasis G, Broxholme J, Ponting CP, et al. Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat Genet 2003;35:258–63.

    Article  PubMed  CAS  Google Scholar 

  9. Lilly CM. Diversity of asthma: evolving concepts of pathophysiology and lessons from genetics. J Allergy Clin Immunol 2005;115:S526–S531.

    Article  PubMed  CAS  Google Scholar 

  10. Van Eerdewegh P., Little RD, Dupuis J, Del Mastro RG, Falls K, Simon J, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 25-72002;418:426–30.

    Article  CAS  Google Scholar 

  11. Holgate ST, Yang Y, Haitchi HM, Powell RM, Holloway JW, Yoshisue H, et al. The genetics of asthma: ADAM33 as an example of a susceptibility gene. Proc Am Thorac Soc 2006;3:440–3.

    Article  PubMed  CAS  Google Scholar 

  12. Holgate ST, Davies DE, Powell RM, Howarth PH, Haitchi HM, Holloway JW. Local genetic and environmental factors in asthma disease pathogenesis: chronicity and persistence mechanisms. Eur Respir J 2007;29:793–803.

    Article  PubMed  CAS  Google Scholar 

  13. Cullinan P, Harris JM, Newman Taylor AJ, Jones M, Taylor P, Dave JR, et al. Can early infection explain the sibling effect in adult atopy? Eur Respir J 2003;22:956–61.

    Article  PubMed  CAS  Google Scholar 

  14. Arshad SH, Bateman B, Matthews SM. Primary prevention of asthma and atopy during childhood by allergen avoidance in infancy: a randomised controlled study. Thorax 2003;58:489–93.

    Article  PubMed  CAS  Google Scholar 

  15. McGill JI, Holgate ST, Church MK, Anderson DF, Bacon A. Allergic eye disease mechanisms. Br J Ophthalmol 1998;82:1203–14.

    Article  PubMed  CAS  Google Scholar 

  16. Salib RJ, Howarth PH. Remodelling of the upper airways in allergic rhinitis: is it a feature of the disease? Clin Exp Allergy 2003;33:1629–33.

    Article  PubMed  CAS  Google Scholar 

  17. Watelet JB, Van ZT, Gjomarkaj M, Canonica GW, Dahlen SE, Fokkens W, et al. Tissue remodelling in upper airways: where is the link with lower airway remodeling? Allergy 2006;61:1249–58.

    Article  PubMed  CAS  Google Scholar 

  18. Senol M, Ozcan A, Kandi B, Karaca S, Aki T, Bayram N. Incidence of atopic stigmata and prick test results in patients with asthma, allergic rhinitis and conjunctivitis. Asian Pac J Allergy Immunol 2006;24:105–9.

    PubMed  Google Scholar 

  19. Gradman J, Wolthers OD. Allergic conjunctivitis in children with asthma, rhinitis and eczema in a secondary outpatient clinic. Pediatr Allergy Immunol 2006;17:524–6.

    Article  PubMed  Google Scholar 

  20. Herbert CA, Holgate ST, Robinson C, Thompson PJ, Stewart GA. Effect of mite allergen on permeability of bronchial mucosa. Lancet 3-11-1990;336:1132.

    Article  Google Scholar 

  21. Herbert CA, King CM, Ring PC, Holgate ST, Stewart GA, Thompson PJ, et al. Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1. Am J Respir Cell Mol Biol 1995;12:369–78.

    PubMed  CAS  Google Scholar 

  22. Stewart GA, Lake FR, Thompson PJ. Faecally derived hydrolytic enzymes from Dermatophagoides pteronyssinus: physicochemical characterisation of potential allergens. Int Arch Allergy Appl Immunol 1991;95:248–56.

    PubMed  CAS  Google Scholar 

  23. Petersen A, Grobe K, Schramm G, Vieths S, Altmann F, Schlaak M, et al. Implications of the grass group I allergens on the sensitization and provocation process. Int Arch Allergy Immunol 1999;118:411–3.

    Article  PubMed  CAS  Google Scholar 

  24. Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 1999;104:123–33.

    Article  PubMed  CAS  Google Scholar 

  25. Widmer F, Hayes PJ, Whittaker RG, Kumar RK. Substrate preference profiles of proteases released by allergenic pollens. Clin Exp Allergy 2000;30:571–6.

    Article  PubMed  CAS  Google Scholar 

  26. Robinson C, Baker SF, Garrod DR. Peptidase allergens, occludin and claudins. Do their interactions facilitate the development of hypersensitivity reactions at mucosal surfaces? Clin Exp Allergy 2001;31:186–92.

    Article  PubMed  CAS  Google Scholar 

  27. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 2006;38:441–6.

    Article  PubMed  CAS  Google Scholar 

  28. Weidinger S, Illig T, Baurecht H, Irvine AD, Rodriguez E, az-Lacava A, et al. Loss-offunction variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. J Allergy Clin Immunol 2006;118:214–9.

    Article  PubMed  CAS  Google Scholar 

  29. Cork MJ, Robinson DA, Vasilopoulos Y, Ferguson A, Moustafa M, MacGowan A, et al. New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J Allergy Clin Immunol 2006;118:3–21.

    Article  PubMed  CAS  Google Scholar 

  30. Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 2005;129:550–64.

    PubMed  CAS  Google Scholar 

  31. Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut 2007;56:61–72.

    Article  PubMed  CAS  Google Scholar 

  32. Xaio C, Bedke M, Holgate ST, Davies DE, Puddicombe SM. Bronchial epithelial barrier integrity is altered in asthma but not normal subjects, independent of atopy. Am J Respir Crit Care Med. ATS Abstracts, San Francisco Meeting, A886. 2007. Ref Type: Abstract.

    Google Scholar 

  33. Hughes JL, Lackie PM, Wilson SJ, Church MK, McGill JI. Reduced structural proteins in the conjunctival epithelium in allergic eye disease. Allergy 2006;61:1268–74.

    Article  PubMed  CAS  Google Scholar 

  34. Bacon AS, Ahluwalia P, Irani AM, Schwartz LB, Holgate ST, Church MK, et al. Tear and conjunctival changes during the allergen-induced early- and late-phase responses. J Allergy Clin Immunol 2000;106:948–54.

    Article  PubMed  CAS  Google Scholar 

  35. Alattia JR, Tong KI, Takeichi M, Ikura M. Cadherins. Methods Mol Biol 2002;172:199–21.

    PubMed  CAS  Google Scholar 

  36. Leir SH, Baker JE, Holgate ST, Lackie PM. Increased CD44 expression in human bronchial epithelial repair after damage or plating at low cell densities. Am J Physiol Lung Cell Mol Physiol 2000;278:L1129–L1137.

    PubMed  CAS  Google Scholar 

  37. Miyake K, Underhill CB, Lesley J, Kincade PW. Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med 1-71990;172:69–75.

    Article  Google Scholar 

  38. Roche WR, Montefort S, Baker J, Holgate ST. Cell adhesion molecules and the bronchial epithelium. Am Rev Respir Dis 1993;148:S79–S82.

    PubMed  CAS  Google Scholar 

  39. Shahana S, Jaunmuktane Z, Asplund MS, Roomans GM. Ultrastructural investigation of epithelial damage in asthmatic and non-asthmatic nasal polyps. Respir Med 2006;100:2018–28.

    Article  PubMed  CAS  Google Scholar 

  40. Pitz S, Moll R. Intermediate-filament expression in ocular tissue. Prog Retin Eye Res 2002;21:241–62.

    Article  PubMed  Google Scholar 

  41. Ryder MI, Weinreb RN. Cytokeratin patterns in corneal, limbal, and conjunctival epithelium. An immunofluorescence study with PKK-1, 8.12, 8.60, and 4.62 anticytokeratin antibodies. Invest Ophthalmol Vis Sci 1990;31:2230–4.

    PubMed  CAS  Google Scholar 

  42. Kasper M, Moll R, Stosiek P, Karsten U. Patterns of cytokeratin and vimentin expression in the human eye. Histochemistry 1988;89:369–77.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang M, Liu Z, Xie Y. The study on the expression of keratin proteins in pterygial epithelium. Yan Ke Xue Bao 2000;16:48–52.

    PubMed  CAS  Google Scholar 

  44. Galou M, Gao J, Humbert J, Mericskay M, Li Z, Paulin D, et al. The importance of intermediate filaments in the adaptation of tissues to mechanical stress: evidence from gene knockout studies. Biol Cell 1997;89:85–97.

    Article  PubMed  CAS  Google Scholar 

  45. Knight DA, Lim S, Scaffidi AK, Roche N, Chung KF, Stewart GA, et al. Protease-activated receptors in human airways: upregulation of PAR-2 in respiratory epithelium from patients with asthma. J Allergy Clin Immunol 2001;108:797–803.

    Article  PubMed  CAS  Google Scholar 

  46. Kawabata A, Kawao N. Physiology and pathophysiology of proteinase-activated receptors (PARs): PARs in the respiratory system: cellular signaling and physiological/pathological roles. J Pharmacol Sci 2005;97:20–4.

    Article  PubMed  CAS  Google Scholar 

  47. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R. Proteinase-activated receptors. Pharmacol Rev 2001;53:245–82.

    PubMed  CAS  Google Scholar 

  48. Asokananthan N, Graham PT, Stewart DJ, Bakker AJ, Eidne KA, Thompson PJ, et al. House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. J Immunol 15-10-2002;169:4572–8.

    Google Scholar 

  49. Hollenberg MD. Physiology and pathophysiology of proteinase-activated receptors (PARs): proteinases as hormone-like signal messengers: PARs and more. J Pharmacol Sci 2005;97:8–13.

    Article  PubMed  CAS  Google Scholar 

  50. Reed CE, Kita H. The role of protease activation of inflammation in allergic respiratory diseases. J Allergy Clin Immunol 2004;114:997–1008.

    Article  PubMed  CAS  Google Scholar 

  51. Asano-Kato N, Fukagawa K, Okada N, Dogru M, Tsubota K, Fujishima H. Tryptase increases proliferative activity of human conjunctival fibroblasts through protease-activated receptor-2. Invest Ophthalmol Vis Sci 2005;46:4622–6.

    Article  PubMed  Google Scholar 

  52. Vliagoftis H, Befus AD, Hollenberg MD, Moqbel R. Airway epithelial cells release eosinophil survival-promoting factors (GM-CSF) after stimulation of proteinase-activated receptor 2. J Allergy Clin Immunol 2001;107:679–85.

    Article  PubMed  CAS  Google Scholar 

  53. D'Agostino B, Roviezzo F, De PR, Terracciano S, De NM, Gallelli L, et al. Activation of protease-activated receptor-2 reduces airways inflammation in experimental allergic asthma. Clin Exp Allergy 2007;37:1436–43.

    PubMed  Google Scholar 

  54. Vergnolle N, Hollenberg MD, Sharkey KA, Wallace JL. Characterization of the inflammatory response to proteinase-activated receptor-2 (PAR2)-activating peptides in the rat paw. Br J Pharmacol 1999;127:1083–90.

    Article  PubMed  CAS  Google Scholar 

  55. Aslam A, Buckley MG, Wilson SJ, Howarth PH, Hollenberg MD, Walls AF. Protease activated receptor-2 (PAR-2) expression is increased in the bronchial epithelium of asthmatics. Clin Exp Allergy 2002;32:1384; Clin Exp Allergy 32, 1384, 2002. Ref Type: Abstract.

    Google Scholar 

  56. Nagata H, Motosugi H, Sanai A, Suzuki H, Ohno K, Numata T, et al. Enhancement of submicroscopic damage of the nasal epithelium by topical allergen challenge in patients with perennial nasal allergy. Ann Otol Rhinol Laryngol 2001;110:236–42.

    PubMed  CAS  Google Scholar 

  57. Lee HM, Kim HY, Kang HJ, Woo JS, Chae SW, Lee SH, et al. Up-regulation of protease-activated receptor 2 in allergic rhinitis. Ann Otol Rhinol Laryngol 2007;116:554–8.

    PubMed  Google Scholar 

  58. Dinh QT, Cryer A, Trevisani M, Dinh S, Wu S, Cifuentes LB, et al. Gene and protein expression of protease-activated receptor 2 in structural and inflammatory cells in the nasal mucosa in seasonal allergic rhinitis. Clin Exp Allergy 2006;36:1039–48.

    Article  PubMed  CAS  Google Scholar 

  59. Dinh QT, Cryer A, Dinh S, Trevisani M, Georgiewa P, Chung F, et al. Protease-activated receptor 2 expression in trigeminal neurons innervating the rat nasal mucosa. Neuropeptides 2005;39:461–6.

    Article  PubMed  CAS  Google Scholar 

  60. Runswick S, Mitchell T, Davies P, Robinson C, Garrod DR. Pollen proteolytic enzymes degrade tight junctions. Respirology 2007;12:834–42.

    Article  PubMed  Google Scholar 

  61. Wan H, Winton HL, Soeller C, Taylor GW, Gruenert DC, Thompson PJ, et al. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin Exp Allergy 2001;31:279–94.

    Article  PubMed  CAS  Google Scholar 

  62. Takano K, Kojima T, Go M, Murata M, Ichimiya S, Himi T, et al. HLA-DR- and CD11cpositive dendritic cells penetrate beyond well-developed epithelial tight junctions in human nasal mucosa of allergic rhinitis. J Histochem Cytochem 2005;53:611–9.

    Article  PubMed  CAS  Google Scholar 

  63. Kobayashi N, Dezawa M, Nagata H, Yuasa S, Konno A. Immunohistochemical study of E-cadherin and ZO-1 in allergic nasal epithelium of the guinea pig. Int Arch Allergy Immunol 1998;116:196–205.

    Article  PubMed  CAS  Google Scholar 

  64. Benson M, Svensson PA, Adner M, Caren H, Carlsson B, Carlsson LM, et al. DNA micro-array analysis of chromosomal susceptibility regions to identify candidate genes for allergic disease: a pilot study. Acta Otolaryngol 2004;124:813–9.

    Article  PubMed  CAS  Google Scholar 

  65. Kusunoki T, Okafuji I, Yoshioka T, Saito M, Nishikomori R, Heike T, et al. SPINK5 polymorphism is associated with disease severity and food allergy in children with atopic dermatitis. J Allergy Clin Immunol 2005;115:636–8.

    Article  PubMed  CAS  Google Scholar 

  66. Ono SJ, Abelson MB. Allergic conjunctivitis: update on pathophysiology and prospects for future treatment. J Allergy Clin Immunol 2005;115:118–22.

    Article  PubMed  CAS  Google Scholar 

  67. Keane-Myers AM, Miyazaki D, Liu G, Dekaris I, Ono S, Dana MR. Prevention of allergic eye disease by treatment with IL-1 receptor antagonist. Invest Ophthalmol Vis Sci 1999;40:3041–6.

    PubMed  CAS  Google Scholar 

  68. Bundoc VG, Keane-Myers A. IL-10 confers protection from mast cell degranulation in a mouse model of allergic conjunctivitis. Exp Eye Res 2007;85:575–9.

    Article  PubMed  CAS  Google Scholar 

  69. Fokkens WJ, Bruijnzeel-Koomen CA, Vroom TM, Rijntjes E, Hoefsmit EC, Mudde GC, et al. The Langerhans cell: an underestimated cell in atopic disease. Clin Exp Allergy 1990;20:627–38.

    Article  PubMed  CAS  Google Scholar 

  70. Godthelp T, Holm AF, Fokkens WJ, Doornenbal P, Mulder PG, Hoefsmit EC, et al. Dynamics of nasal eosinophils in response to a nonnatural allergen challenge in patients with allergic rhinitis and control subjects: a biopsy and brush study. J Allergy Clin Immunol 1996;97:800–11.

    Article  PubMed  CAS  Google Scholar 

  71. Fokkens WJ, Vroom TM, Rijntjes E, Mulder PG. Fluctuation of the number of CD-1(T6)positive dendritic cells, presumably Langerhans cells, in the nasal mucosa of patients with an isolated grass-pollen allergy before, during, and after the grass-pollen season. J Allergy Clin Immunol 1989;84:39–43.

    Article  PubMed  CAS  Google Scholar 

  72. Till SJ, Jacobson MR, O'Brien F, Durham SR, Kleinjan A, Fokkens WJ, et al. Recruitment of CD1a + Langerhans cells to the nasal mucosa in seasonal allergic rhinitis and effects of topical corticosteroid therapy. Allergy 2001;56:126–31.

    Article  PubMed  CAS  Google Scholar 

  73. Bachert C, Behrendt H, Nosbusch K, Hauser U, Ganzer U. Possible role of macrophages in allergic rhinitis. Int Arch Allergy Appl Immunol 1991;94:244–5.

    PubMed  CAS  Google Scholar 

  74. Francis JN, Lloyd CM, Sabroe I, Durham SR, Till SJ. T lymphocytes expressing CCR3 are increased in allergic rhinitis compared with non-allergic controls and following allergen immunotherapy. Allergy 2007;62:59–65.

    Article  PubMed  CAS  Google Scholar 

  75. Jutel M, Akdis M, Budak F, ebischer-Casaulta C, Wrzyszcz M, Blaser K, et al. IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur J Immunol 2003;33:1205–14.

    Article  PubMed  CAS  Google Scholar 

  76. Ling EM, Smith T, Nguyen XD, Pridgeon C, Dallman M, Arbery J, et al. Relation of CD4 + CD25 + regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 21-2-2004;363:608–15.

    Article  CAS  Google Scholar 

  77. Malmhall C, Bossios A, Pullerits T, Lotvall J. Effects of pollen and nasal glucocorticoid on FOXP3 +, GATA-3 + and T-bet + cells in allergic rhinitis. Allergy 2007;62:1007–13.

    Article  PubMed  CAS  Google Scholar 

  78. Lee JH, Yu HH, Wang LC, Yang YH, Lin YT, Chiang BL. The levels of CD4 + CD25 + regulatory T cells in paediatric patients with allergic rhinitis and bronchial asthma. Clin Exp Immunol 2007;148:53–63.

    PubMed  CAS  Google Scholar 

  79. Xu G, Mou Z, Jiang H, Cheng L, Shi J, Xu R, et al. A possible role of CD4 + CD25 + T cells as well as transcription factor Foxp3 in the dysregulation of allergic rhinitis. Laryngoscope 2007;117:876–80.

    Article  PubMed  CAS  Google Scholar 

  80. Siewert C, Menning A, Dudda J, Siegmund K, Lauer U, Floess S, et al. Induction of organ-selective CD4 + regulatory T cell homing. Eur J Immunol 2007;37:978–89.

    Article  PubMed  CAS  Google Scholar 

  81. Ahluwalia P, Anderson DF, Wilson SJ, McGill JI, Church MK. Nedocromil sodium and levocabastine reduce the symptoms of conjunctival allergen challenge by different mechanisms. J Allergy Clin Immunol 2001;108:449–54.

    Article  PubMed  CAS  Google Scholar 

  82. Anderson DF, MacLeod JD, Baddeley SM, Bacon AS, McGill JI, Holgate ST, et al. Seasonal allergic conjunctivitis is accompanied by increased mast cell numbers in the absence of leucocyte infiltration. Clin Exp Allergy 1997;27:1060–6.

    Article  PubMed  CAS  Google Scholar 

  83. Trocme SD, Kephart GM, Allansmith MR, Bourne WM, Gleich GJ. Conjunctival deposition of eosinophil granule major basic protein in vernal keratoconjunctivitis and contact lens-associated giant papillary conjunctivitis. Am J Ophthalmol 15-7-1989;108:57–63.

    Google Scholar 

  84. Foster CS, Rice BA, Dutt JE. Immunopathology of atopic keratoconjunctivitis. Ophthalmology 1991;98:1190–6.

    PubMed  CAS  Google Scholar 

  85. Trocme SD, Leiferman KM, George T, Bonini S, Foster CS, Smit EE, et al. Neutrophil and eosinophil participation in atopic and vernal keratoconjunctivitis. Curr Eye Res 2003;26:319–25.

    Article  PubMed  CAS  Google Scholar 

  86. Bradding P, Feather IH, Wilson S, et al. Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. J Immunol 1993;151:3853–65.

    PubMed  CAS  Google Scholar 

  87. Pawankar R, Okuda M, Hasegawa S, et al. Interleukin-13 expression in the nasal mucosa of perennial allergic rhinitis. Am J Respir Critical Care Med 1995;152:2059–67.

    CAS  Google Scholar 

  88. Pawankar R, Ra C. Heterogeneity of mast cells and T cells in the nasal mucosa. J Allergy Clin Immunol 1996;98:249–62.

    Article  Google Scholar 

  89. Pawankar R, Takizawa R, Saito H, et al. RANTES can regulate mast cell migration into the allergic nasal epithelium [abstract]. J Allergy Clin Immunol 2002;101:153.

    Google Scholar 

  90. Lilly CM, Nakamura H, Kesselman H, et al. Expression of eotaxin by human lung epithelial cells: induction by cytokines and inhibition by glucocorticoids. J Clin Invest 1997;99:1767–73.

    Article  PubMed  CAS  Google Scholar 

  91. Li L, Xia Y, Nguyen A, et al. Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. J Immunol 1999;162:2477–87.

    PubMed  CAS  Google Scholar 

  92. Sekiya T, Miyamasu M, Yamaguchi M, Pawankar R, et al. Inducible expression of a Th2typeCCchemokine, thymus-and activation regulated chemokine (TARC) by human bronchial epithelial cells. J Immunol 2000;165:2205–13.

    PubMed  CAS  Google Scholar 

  93. Naclerio RM, Proud D, Togias AG, Adkinson NF, Jr., Meyers DA, Kagey-Sobotka A, et al. Inflammatory mediators in late antigen-induced rhinitis. N Engl J Med 11-71985;313:65–70.

    Article  Google Scholar 

  94. Naclerio RM, Meier HL, Kagey-Sobotka A, Adkinson NF, Jr., Meyers DA, Norman PS, et al. Mediator release after nasal airway challenge with allergen. Am Rev Respir Dis 1983;128:597–602.

    PubMed  CAS  Google Scholar 

  95. Wagenmann M, Baroody FM, Cheng CC, Kagey-Sobotka A, Lichtenstein LM, Naclerio RM. Bilateral increases in histamine after unilateral nasal allergen challenge. Am J Respir Crit Care Med 1997;155:426–31.

    PubMed  CAS  Google Scholar 

  96. Juliusson S, Holmberg K, Baumgarten CR, Olsson M, Enander I, Pipkorn U. Tryptase in nasal lavage fluid after local allergen challenge. Relationship to histamine levels and TAME-esterase activity. Allergy 1991;46:459–65.

    PubMed  CAS  Google Scholar 

  97. Rasp G, Hochstrasser K. Tryptase in nasal fluid is a useful marker of allergic rhinitis. Allergy 1993;48:72–4.

    Article  PubMed  CAS  Google Scholar 

  98. Wagenmann M, Schumacher L, Bachert C. The time course of the bilateral release of cytokines and mediators after unilateral nasal allergen challenge. Allergy 2005;60:1132–8.

    Article  PubMed  CAS  Google Scholar 

  99. Sim TC, Grant JA, Hilsmeier KA, Fukuda Y, Alam R. Proinflammatory cytokines in nasal secretions of allergic subjects after antigen challenge. Am J Respir Crit Care Med 1994;149:339–44.

    PubMed  CAS  Google Scholar 

  100. Bachert C, Hauser U, Prem B, Rudack C, Ganzer U. Proinflammatory cytokines in allergic rhinitis. Eur Arch Otorhinolaryngol 1995;252(Suppl 1):S44–S49.

    Article  PubMed  Google Scholar 

  101. Jeffery PK. Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 2004;1:176–83.

    Article  PubMed  CAS  Google Scholar 

  102. An SS, Bai TR, Bates JH, Black JL, Brown RH, Brusasco V, et al. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur Respir J 2007;29:834–60.

    Article  PubMed  CAS  Google Scholar 

  103. Funayama Y, Sasaki I, Naito H, Fukushima K, Matsuno S, Masuda T. Remodeling of vascular wall in Crohn's disease. Dig Dis Sci 1999;44:2319–23.

    Article  PubMed  CAS  Google Scholar 

  104. Meijer MJ, Mieremet-Ooms MA, van der Zon AM, van DW, van Hogezand RA, Sier CF, et al. Increased mucosal matrix metalloproteinase-1, -2, -3 and -9 activity in patients with inflammatory bowel disease and the relation with Crohn's disease phenotype. Dig Liver Dis 2007;39:733–9.

    Article  PubMed  CAS  Google Scholar 

  105. Brandtzaeg P. The changing immunological paradigm in coeliac disease. Immunol Lett 15-6-2006;105:127–39.

    Article  CAS  Google Scholar 

  106. Bacon AS, McGill JI, Anderson DF, Baddeley S, Lightman SL, Holgate ST. Adhesion molecules and relationship to leukocyte levels in allergic eye disease. Invest Ophthalmol Vis Sci 1998;39:322–30.

    PubMed  CAS  Google Scholar 

  107. Shimizu A, Tepler I, Benfey PN, Berenstein EH, Siriganian RP, Leder P. Human and rat mast cell high-affinity immunoglobulin E receptors: characterization of putative alpha-chain gene products. Proc Natl Acad Sci USA 1988;85:1907–11.

    Article  PubMed  CAS  Google Scholar 

  108. Kuster H, Zhang L, Brini AT, MacGlashan Jr DW, Kinet J-P. The gene and cDNA for the high affinity immunoglobulin E receptor β chain and expression of complete human receptor. J Biol Chem 1992;18:12782–87.

    Google Scholar 

  109. Kuster H, Thompson H, Kinet J-P. Characterization and expression of the gene for the human Fc receptor gamma subunit. Definition of a new gene family. J Biol Chem 1990;265:6448–52.

    PubMed  CAS  Google Scholar 

  110. Blank U, Ra C, Kinet J-P. Characterization of truncated α chain products from human, rat and mouse high affinity receptor for immunoglobulin E. J Biol Chem 1991;266:2639–45.

    PubMed  CAS  Google Scholar 

  111. Hakimi J, Seals C, Kondas JA, Pettine L, Danho W, Kochan JP. The α subunit of the human IgE receptor (FceRI) is sufficient for high affinity IgE binding. J Biol Chem 1990;265:22079–85.

    PubMed  CAS  Google Scholar 

  112. Kinet J-P, Blank U, Ra C, White K, Metzger H, Kochan J. Isolation and characterization of the β-subunit cDNAs coding for the of the high affinity receptor for immunoglobulin E. Proc Natl Acad Sci USA 1993;85:6483–7.

    Article  Google Scholar 

  113. Benhamou M, Gutkind JS, Robbins KC, Siriganian RP. Tyrosine phosphorylation coupled to an IgE receptor mediated signal transduction and histamine release. Proc Natl Acad Sci USA 1990;87:5327–32.

    Article  PubMed  CAS  Google Scholar 

  114. Connelly PA, Farrell CA, Marenda JM, Conklyn MJ, Showell HJ. Tyrosine phosphorylation is an early signalling event common to Fc receptor crosslinking in human neutrophils and rat basophilic leukemia cells (RBL-2H3). Biochem Biophys Res Commun 1991;177:192–99.

    Article  PubMed  CAS  Google Scholar 

  115. Kawakami T, Inagaki N, Takei M, et al. Tyrosine phosphorylation is required for mast cell activation through FceRI cross linking. J Immunol 1992;175:1285–92.

    Google Scholar 

  116. Dombrowicz D, Flamand V, Brigman KK, Koller BH, Kinet J-P. Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor α chain gene. Cell 1993;75:969–76.

    Article  PubMed  CAS  Google Scholar 

  117. Pawankar R, Okuda M, Yssel H, et al. Nasal mast cells in perennial allergic rhinitis exhibit increased expression of the FcepsilonRI,CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J Clin Invest 1997;99:1492–99.

    Article  PubMed  CAS  Google Scholar 

  118. Yamaguchi M, Lantz CS, Oettgen HC, et al. IgE enhances mouse mast cell FceRI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions. J Exp Med 1997;185(4):663.

    Article  PubMed  CAS  Google Scholar 

  119. Saito H, Nakajima T, Tachimoto H. Upregulation of the FceRIα by IgE molecules on human cultured mast cells and basophils. J Allergy Clin Immunol 1997;99(1): S103.

    Google Scholar 

  120. Pawankar R, Ra C. IgE-IgE receptor mast cells axis in allergy. Clin Exp Allergy 1998;28:6–11.

    Article  PubMed  CAS  Google Scholar 

  121. Pawankar R. Revisting the roles of mast cells and its relation to local IgE synthesis. Am J Rhinol 2001;14:309.

    Article  Google Scholar 

  122. Durham SR, Gould HJ, Thienes CP, et al. Expression of epsilon germ-line gene transcripts and mRNA for the epsilon heavy chain of IgE in nasal B cells and the effects of topical corticosteroid. Eur J Immunol 1997;27(11):2899.

    Article  PubMed  CAS  Google Scholar 

  123. Pawankar R, Yamagishi S, Takizawa R, Yagi T. Local IgE synthesis: its functional significance and strategy for new therapy. J Rhinol 2000;39:69.

    Google Scholar 

  124. Ciprandi G, Buscaglia S, Pesce G, Pronzato C, Ricca V, Parmiani S, et al. Minimal persistent inflammation is present at mucosal level in patients with asymptomatic rhinitis and mite allergy. J Allergy Clin Immunol 1995;96:971–9.

    Article  PubMed  CAS  Google Scholar 

  125. Naito K, Takeda N, Yokoyama N, Ibata K, Ishihara M, Senoh Y, et al. The distribution of eosinophil cationic protein positive eosinophils in the nasal mucosa of the nasal allergy patients. Auris Nasus Larynx 1993;20:197–204.

    PubMed  CAS  Google Scholar 

  126. Berger G, Bernheim J, Ophir D. Epithelial shedding of the inferior turbinate in perennial allergic and nonallergic rhinitis: a riddle to solve. Arch Otolaryngol Head Neck Surg 2007;133:78–82.

    Article  PubMed  Google Scholar 

  127. Gleich GJ, Flavahan NA, Fujisawa T, Vanhoutte PM. The eosinophil as a mediator of damage to respiratory epithelium: a model for bronchial hyperreactivity. J Allergy Clin Immunol 1988;81:776–81.

    Article  PubMed  CAS  Google Scholar 

  128. Amin K, Rinne J, Haahtela T, Simola M, Peterson CG, Roomans GM, et al. Inflammatory cell and epithelial characteristics of perennial allergic and nonallergic rhinitis with a symptom history of 1 to 3 years' duration. J Allergy Clin Immunol 2001;107:249–57.

    Article  PubMed  CAS  Google Scholar 

  129. Watanabe K, Kiuna C. Epithelial damage of nasal mucosa in nasal allergy. Ann Otol Rhinol Laryngol 1998;107:564–70.

    PubMed  CAS  Google Scholar 

  130. Montero MP, Blanco E, Matta Campos JJ, Gonzalez EA, Guidos FG, Tinajeros Castaneda OA. Nasal remodeling in patient with perennial allergic rhinitis. Rev Alerg Mex 2003;50:79–82.

    Google Scholar 

  131. Chanez P, Vignola AM, Vic P, Guddo F, Bonsignore G, Godard P, et al. Comparison between nasal and bronchial inflammation in asthmatic and control subjects. Am J Respir Crit Care Med 1999;159:588–95.

    PubMed  CAS  Google Scholar 

  132. Berger G, Marom Z, Ophir D. Goblet cell density of the inferior turbinates in patients with perennial allergic and nonallergic rhinitis. Am J Rhinol 1997;11:233–6.

    Article  PubMed  CAS  Google Scholar 

  133. Malekzadeh S, Hamburger MD, Whelan PJ, Biedlingmaier JF, Baraniuk JN. Density of middle turbinate subepithelial mucous glands in patients with chronic rhinosinusitis. Otolaryngol Head Neck Surg 2002;127:190–5.

    Article  PubMed  Google Scholar 

  134. Tos M, Morgensen C. Nasal glands in nasal allergy. Acta Otolaryngol 1977;83:498–504.

    Article  PubMed  CAS  Google Scholar 

  135. Sanai A, Nagata H, Konno A. Extensive interstitial collagen deposition on the basement membrane zone in allergic nasal mucosa. Acta Otolaryngol 1999;119:473–8.

    Article  PubMed  CAS  Google Scholar 

  136. Matovinovic E, Solberg O, Shusterman D. Epidermal growth factor receptor – but not histamine receptor – is upregulated in seasonal allergic rhinitis. Allergy 2003;58:472–5.

    Article  PubMed  CAS  Google Scholar 

  137. Wu X, Myers AC, Goldstone AC, Togias A, Sanico AM. Localization of nerve growth factor and its receptors in the human nasal mucosa. J Allergy Clin Immunol 2006;118:428–33.

    Article  PubMed  CAS  Google Scholar 

  138. van Toorenenbergen AW, Gerth van WR, Vermeulen AM. Allergen-induced matrix metalloproteinase-9 in nasal lavage fluid. Allergy 1999;54:293–4.

    Article  PubMed  Google Scholar 

  139. Kirmaz C, Ozbilgin K, Yuksel H, Bayrak P, Unlu H, Giray G, et al. Increased expression of angiogenic markers in patients with seasonal allergic rhinitis. Eur Cytokine Netw 2004;15:317–22.

    PubMed  CAS  Google Scholar 

  140. Sarin S, Undem B, Sanico A, Togias A. The role of the nervous system in rhinitis. J Allergy Clin Immunol 2006;118:999–1016.

    Article  PubMed  Google Scholar 

  141. Pawankar R, Inflammatory mechanisms in allergic rhinitis. Curr Opin Allergy Clin Immunol. 2007;7(1):1–4.

    Article  PubMed  Google Scholar 

  142. Fontanari P, Zattara-Hartmann MC, Burnet H, Jammes Y. Nasal eupnoeic inhalation of cold, dry air increases airway resistance in asthmatic patients. Eur Respir J 1997;10:2250–4.

    Article  PubMed  CAS  Google Scholar 

  143. O'Hanlon S, Facer P, Simpson KD, Sandhu G, Saleh HA, Anand P. Neuronal markers in allergic rhinitis: expression and correlation with sensory testing. Laryngoscope 2007;117:1519–27.

    Article  PubMed  CAS  Google Scholar 

  144. Fang SY, Shen CL, Ohyama M. Distribution and quantity of neuroendocrine markers in allergic rhinitis. Acta Otolaryngol 1998;118:398–403.

    Article  PubMed  CAS  Google Scholar 

  145. Heppt W, Dinh QT, Cryer A, Zweng M, Noga O, Peiser C, et al. Phenotypic alteration of neuropeptide-containing nerve fibres in seasonal intermittent allergic rhinitis. Clin Exp Allergy 2004;34:1105–10.

    Article  PubMed  CAS  Google Scholar 

  146. Sanico AM, Philip G, Proud D, Naclerio RM, Togias A. Comparison of nasal mucosal responsiveness to neuronal stimulation in non-allergic and allergic rhinitis: effects of capsaicin nasal challenge. Clin Exp Allergy 1998;28:92–100.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Watelet, JB., McGill, J.I., Pawankar, R., Church, D.S., Church, M.K. (2009). Allergic Rhinitis and Conjunctivitis: Update on Pathophysiology. In: Pawankar, R., Holgate, S.T., Rosenwasser, L.J. (eds) Allergy Frontiers: Clinical Manifestations. Allergy Frontiers, vol 3. Springer, Tokyo. https://doi.org/10.1007/978-4-431-88317-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-88317-3_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-88316-6

  • Online ISBN: 978-4-431-88317-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics