Mast Cell and Basophils: Interaction with IgE and Responses to Toll like Receptor Activators

  • Jean S. Marshall
  • Michael G. Brown
  • Ruby Pawankar
Part of the Allergy Frontiers book series (ALLERGY, volume 2)


Mast Cell Atopic Dermatitis Allergic Rhinitis Allergic Rhinitis Allergy Clin Immunol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marshall JS and Jawdat DM (2004) Mast cells in innate immunity. J Allergy Clin Immunol 114: 21–7PubMedCrossRefGoogle Scholar
  2. 2.
    Dawicki W, Marshall JS (2007) New and emerging roles for mast cells in host defence. Curr Opin Immunol 19:31–8PubMedCrossRefGoogle Scholar
  3. 3.
    Woodbury RG, Miller HR, Huntley JF, et al (1984) Mucosal mast cells are functionally active during spontaneous expulsion of intestinal nematode infections in rat. Nature 312:450–2PubMedCrossRefGoogle Scholar
  4. 4.
    Knight PA, Wright SH, Lawrence CE, et al (2000) Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J Exp Med 192:1849–56PubMedCrossRefGoogle Scholar
  5. 5.
    McDermott, JR., Bartram RE, Knight PA, et al (2003) Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc Natl Acad Sci USA 100:7761–6PubMedCrossRefGoogle Scholar
  6. 6.
    Pennock JL, Grencis RK (2006) The mast cell and gut nematodes: damage and defence. Chem Immunol Allergy 90:128–40PubMedCrossRefGoogle Scholar
  7. 7.
    Echtenacher B, Männel DN, Hültner L (1996) Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381:75–7PubMedCrossRefGoogle Scholar
  8. 8.
    Malaviya R, Ikeda T, Ross E, et al (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 381:77–80PubMedCrossRefGoogle Scholar
  9. 9.
    Prodeus AP, Zhou X, Maurer M, et al (1997) Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature 39:172–5Google Scholar
  10. 10.
    Xu X, Zhang D, Lyubynska N, et al (2006) Mast cells protect mice from Mycoplasma pneumonia. Am J Respir Crit Care Med 173:219–25PubMedCrossRefGoogle Scholar
  11. 11.
    Huang C, De Sanctis GT, O'Brien PJ, et al (2001) Evaluation of the substrate specificity of human mast cell tryptase beta I and demonstration of its importance in bacterial infections of the lung. J Biol Chem 276:26276–84PubMedCrossRefGoogle Scholar
  12. 12.
    Caughey GH (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217:141–54PubMedCrossRefGoogle Scholar
  13. 13.
    Lin TJ, Garduno R, Boudreau RT, et al (2002) Pseudomonas aeruginosa activates human mast cells to induce neutrophil transendothelial migration via mast cell-derived IL-1 alpha and beta. J Immunol 169:4522–30PubMedGoogle Scholar
  14. 14.
    McCurdy JD, Olynych TJ, Maher LH, et al (2003) Cutting edge: distinct Toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. J Immunol 170:1625–9PubMedGoogle Scholar
  15. 15.
    Olynych TJ, Jakeman DL, Marshall JS (2006) Fungal zymosan induces leukotriene production by human mast cells through a dectin-1-dependent mechanism. J Allergy Clin Immunol 118:837–43PubMedCrossRefGoogle Scholar
  16. 16.
    King CA, Anderson R, Marshall JS (2002) Dengue virus selectively induces human mast cell chemokine production. J Virol 76:8408–19PubMedCrossRefGoogle Scholar
  17. 17.
    Jolly S, Detilleux J, Desmecht D (2004) Extensive mast cell degranulation in bovine respiratory syncytial virus-associated paroxystic respiratory distress syndrome. Vet Immunol Immunopathol 97:125–36PubMedCrossRefGoogle Scholar
  18. 18.
    Orinska Z, Bulanova E, Budagian V, et al (2005) TLR3-induced activation of mast cells modulates CD8 + T-cell recruitment. Blood 106:978–87PubMedCrossRefGoogle Scholar
  19. 19.
    Zollner TM, Wichelhaus TA, Hartung A, et al (2000) Colonization with superantigen-producing Staphylococcus aureus is associated with increased severity of atopic dermatitis. Clin Exp Allergy 30:994–1000PubMedCrossRefGoogle Scholar
  20. 20.
    Johnston SL, Ferrero F, Garcia ML, et al (2005) Oral oseltamivir improves pulmonary function and reduces exacerbation frequency for influenza-infected children with asthma. Pediatr Infect Dis J 24: 225–32PubMedCrossRefGoogle Scholar
  21. 21.
    Matsuse H, Kondo Y, Saeki S, et al (2005) Naturally occurring parainfluenza virus 3 infection in adults induces mild exacerbation of asthma associated with increased sputum concentrations of cysteinyl leukotrienes. Int Arch Allergy Immunol 138:267–72PubMedCrossRefGoogle Scholar
  22. 22.
    Lukacs NW, Smit J, Lindell D, et al (2007) Respiratory syncytial virus-induced pulmonary disease and exacerbation of allergic asthma. Contrib Microbiol 14:68–82PubMedCrossRefGoogle Scholar
  23. 23.
    Qureshi ST, Medzhitov R (2003) Toll-like receptors and their role in experimental models of microbial infection. Genes Immun 4:87–94PubMedCrossRefGoogle Scholar
  24. 24.
    Pasare C, Medzhitov (2005) Toll-like receptors: linking innate and adaptive immunity. Adv Exp Med Biol 560:11–8PubMedCrossRefGoogle Scholar
  25. 25.
    Uematsu S, Akira S (2006) Toll-like receptors and innate immunity. J Mol Med 84:712–25PubMedCrossRefGoogle Scholar
  26. 26.
    Uematsu S, Akira S (2007) Toll-like receptors and type I interferons. J Biol Chem 282:15319–23PubMedCrossRefGoogle Scholar
  27. 27.
    Malaviya R, Gao Z, Thankavel K, et al (1999) The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositolanchored molecule CD48. Proc Natl Acad Sci USA 96:8110–5PubMedCrossRefGoogle Scholar
  28. 28.
    Edelson BT, Li Z, Pappan LK, et al (2004). Mast cell-mediated inflammatory responses require the alpha 2 beta 1 integrin. Blood 103:2214–20PubMedCrossRefGoogle Scholar
  29. 29.
    Edelson BT, Stricker TP, Li Z, et al (2006) Novel collectin/C1q receptor mediates mast cell activation and innate immunity. Blood 107:143–50PubMedCrossRefGoogle Scholar
  30. 30.
    Mullaly SC, Kubes P (2007) Mast cell-expressed complement receptor, not TLR2, is the main detector of zymosan in peritonitis. Eur J Immunol 37:224–34PubMedCrossRefGoogle Scholar
  31. 31.
    McCurdy JD, Lin TJ, Marshall JS (2001) Toll-like receptor 4-mediated activation of murine mast cells. J Leukoc Biol 70:977–84PubMedGoogle Scholar
  32. 32.
    Supajatura V, Ushio H, Nakao A, et al (2001) Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4. J Immunol 167:2250–6PubMedGoogle Scholar
  33. 33.
    Supajatura V, Ushio H, Nakao A, et al (2002) Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J Clin Invest 109:1351–9PubMedGoogle Scholar
  34. 34.
    Ikeda T, Funaba M (2003) Altered function of murine mast cells in response to lipopolysaccharide and peptidoglycan. Immunol Lett 88:21–6PubMedCrossRefGoogle Scholar
  35. 35.
    Varadaradjalou S, Féger F, Thieblemont N, et al (2003) Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur J Immunol 33:899–906PubMedCrossRefGoogle Scholar
  36. 36.
    Kulka M, Alexopoulou L, Flavell RA, et al (2004) Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 114:174–82PubMedCrossRefGoogle Scholar
  37. 37.
    Bischoff SC, Krämer S (2007) Human mast cells, bacteria, and intestinal immunity. Immunol Rev 217:329–37PubMedCrossRefGoogle Scholar
  38. 38.
    Kulka M, Metcalfe DD (2006) TLR3 activation inhibits human mast cell attachment to fibronectin and vitronectin. Mol Immunol 43:1579–86PubMedCrossRefGoogle Scholar
  39. 39.
    Matsushima H., Yamada N, Matsue H, et al (2004) TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol 173:531–41PubMedGoogle Scholar
  40. 40.
    Orinska Z, Bulanova E, Budagian V, et al (2005) TLR3-induced activation of mast cells modulates CD8 + T-cell recruitment. Blood 106:978–87PubMedCrossRefGoogle Scholar
  41. 41.
    Bonini S, Micera A, Iovieno A, et al (2005) Expression of Toll-like receptors in healthy and allergic conjunctiva. Ophthalmology 112:1528; discussion 1548–9PubMedCrossRefGoogle Scholar
  42. 42.
    Bischoff SC (2007) Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol 7:93–104PubMedCrossRefGoogle Scholar
  43. 43.
    Leal-Berumen I, Conlon P, Marshall JS (1994) IL-6 production by rat peritoneal mast cells is not necessarily preceded by histamine release and can be induced by bacterial lipopolysaccharide. J Immunol 152:5468–76PubMedGoogle Scholar
  44. 44.
    Okayama Y (2005) Mast cell-derived cytokine expression induced via Fc receptors and Toll-like receptors. Chem Immunol Allergy 87:101–10PubMedCrossRefGoogle Scholar
  45. 45.
    Qiao H, Andrade MV, Lisboa FA, et al (2006) FcepsilonR1 and toll-like receptors mediate synergistic signals to markedly augment production of inflammatory cytokines in murine mast cells. Blood 107:610–8PubMedCrossRefGoogle Scholar
  46. 46.
    Olynych TJ, Jakeman DL, Marshall JS (2006) Fungal zymosan induces leukotriene production by human mast cells through a dectin-1-dependent mechanism. J Allergy Clin Immunol 118:837–43PubMedCrossRefGoogle Scholar
  47. 47.
    Rogers NC, Slack EC, Edwards AD, et al (2005) Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22:507–17PubMedCrossRefGoogle Scholar
  48. 48.
    Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6:33–43PubMedCrossRefGoogle Scholar
  49. 49.
    Suram S, Brown GD, Ghosh M, et al (2006) Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the beta-glucan receptor. J Biol Chem 281:5506–14PubMedCrossRefGoogle Scholar
  50. 50.
    Okumura S, Kashiwakura J, Tomita H, et al (2003) Identification of specific gene expression profiles in human mast cells mediated by Toll-like receptor 4 and FcepsilonRI. Blood 102:2547–54PubMedCrossRefGoogle Scholar
  51. 51.
    Tkaczyk C, Jensen BM, Iwaki S, et al (2006) Adaptive and innate immune reactions regulating mast cell activation: from receptor-mediated signaling to responses. Immunol Allergy Clin North Am 26:427–50PubMedCrossRefGoogle Scholar
  52. 52.
    King CA, Marshall JS, Alshurafa H, et al (2000) Release of vasoactive cytokines by antibody-enhanced dengue virus infection of a human mast cell/basophil line. J Virol 74:7146–50PubMedCrossRefGoogle Scholar
  53. 53.
    King CA, Anderson R, Marshall JS (2002) Dengue virus selectively induces human mast cell chemokine production. J Virol 76:8408–19PubMedCrossRefGoogle Scholar
  54. 54.
    Heib V, Becker M, Warger T, et al (2007) Mast cells are crucial for early inflammation, migration of Langerhans cells, and CTL responses following topical application of TLR7 ligand in mice. Blood 110:946–53PubMedCrossRefGoogle Scholar
  55. 55.
    Zhu FG, Marshall JS (2001) CpG-containing oligodeoxynucleotides induce TNF-alpha and IL-6 production but not degranulation from murine bone marrow-derived mast cells. J Leukoc Biol 69:253–62PubMedGoogle Scholar
  56. 56.
    Sundstrom JB, Little DM, Villinger F, et al (2004) Signaling through Toll-like receptors triggers HIV-1 replication in latently infected mast cells. J Immunol 172:4391–401PubMedGoogle Scholar
  57. 57.
    Yoshioka M, Fukuishi N, Iriguchi S, et al (2007) Lipoteichoic acid downregulates FcepsilonRI expression on human mast cells through Toll-like receptor 2. J Allergy Clin Immunol 120:452–61PubMedCrossRefGoogle Scholar
  58. 58.
    Fehrenbach K, Port F, Grochowy G, et al (2007) Stimulation of mast cells via FcvarepsilonR1 and TLR2: the type of ligand determines the outcome. Mol Immunol 44:2087–94PubMedCrossRefGoogle Scholar
  59. 59.
    Talreja J, Kabir MH, B Filla M, et al (2004) Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall components. Immunology 113:224–33PubMedCrossRefGoogle Scholar
  60. 60.
    Nigo YI, Yamashita M, Hirahara K, et al (2006) Regulation of allergic airway inflammation through Toll-like receptor 4-mediated modification of mast cell function. Proc Natl Acad Sci USA 103:2286–91PubMedCrossRefGoogle Scholar
  61. 61.
    Yamamoto K, Kawamura I, Ito J, et al (2006) Modification of allergic inflammation in murine model of rhinitis by different bacterial ligands: involvement of mast cells and dendritic cells. Clin Exp Allergy 36:760–9PubMedCrossRefGoogle Scholar
  62. 62.
    Gondokaryono SP, Ushio H, Niyonsaba F, et al (2007) The extra domain A of fibronectin stimulates murine mast cells via Toll-like receptor 4. J Leukoc Biol. 82:657–65PubMedCrossRefGoogle Scholar
  63. 63.
    McLachlan JB, Hart JP, Pizzo SV, et al (2003) Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat Immunol 4:1199–205PubMedCrossRefGoogle Scholar
  64. 64.
    Jawdat DM, Rowden G, Marshall JS (2006) Mast cells have a pivotal role in TNF-independent lymph node hypertrophy and the mobilization of Langerhans cells in response to bacterial peptidoglycan. J Immunol 177:1755–62PubMedGoogle Scholar
  65. 65.
    Askenase PW, Van Loveren H, Kraeuter-Kops S, et al (1983) Defective elicitation of delayed-type hypersensitivity in W/Wv and SI/SId mast cell-deficient mice. J Immunol 131: 2687–94PubMedGoogle Scholar
  66. 66.
    Galli SJ, Hammel I (1984) Unequivocal delayed hypersensitivity in mast cell-deficient and beige mice. Science 226:710–3PubMedCrossRefGoogle Scholar
  67. 67.
    Kerdel FA, Belsito DV, Scotto-Chinnici R, et al (1987) Mast cell participation during the elicitation of murine allergic contact hypersensitivity. J Invest Dermatol 88:686–90PubMedCrossRefGoogle Scholar
  68. 68.
    Bryce PJ, Miller ML, Miyajima I, et al (2005) Immune sensitization in the skin is enhanced by antigen-independent effects of IgE on mast cells. Novartis Found Symp 271:15–24; discussion 24–38, 95–9PubMedCrossRefGoogle Scholar
  69. 69.
    Gelfand EW (2004) Inflammatory mediators in allergic rhinitis. J Allergy Clin Immunol 114:S135–8PubMedCrossRefGoogle Scholar
  70. 70.
    Irani AMA, Schecter NM, Craig SS, et al (1986) Two types of human mast cell that have distinct neutral protease compositions. Proc Natl Acad Sci USA. 83:4464–9PubMedCrossRefGoogle Scholar
  71. 71.
    Enerback L, Pipkorn U, Granerus G (1986) Intraepithelial migration of nasal mucosal mast cells in hay fever. Int Arch Allergy Appl Immunol 80:44–51PubMedGoogle Scholar
  72. 72.
    Pawankar R, Ra C (1996) Heterogeneity of mast cells and T cells in the nasal mucosa. J Allergy Clin Immunol 98:S248–62PubMedCrossRefGoogle Scholar
  73. 73.
    Kawabori S, Kanai N, Tosho T (1995) Proliferative activity of mast cells in allergic nasal mucosa. Clin Exp Allergy 25:173–8PubMedCrossRefGoogle Scholar
  74. 74.
    Pawankar R (2005) Mast cells in allergic airway disease. In: Mast cells in allergic diseases. Saito H, Okayama Y (eds). New York: Karger, BaselGoogle Scholar
  75. 75.
    Ahn K, Takai S, Pawankar R et al (2000) Regulation of chymase production in human mast cell progenitors. J Allergy Clin Immunol 106:321–8PubMedCrossRefGoogle Scholar
  76. 76.
    Creticos PS, Peters SP, Adkinson NF, Jr., et al (1984) Peptide leukotriene release after antigen challenge in patients sensitive to ragweed. N Engl J Med 310:1626–30PubMedCrossRefGoogle Scholar
  77. 77.
    Freeland HS, Pipkorn U, Schleimer RP, et al (1989) Leukotriene B4 as a mediator of early and late reactions to antigen in humans: the effect of systemic glucocorticoid treatment in vivo. J Allergy Clin Immunol 83:634–42PubMedCrossRefGoogle Scholar
  78. 78.
    Proud D, Bailey GS, Naclerio RM, et al (1992) Tryptase and histamine as markers to evaluate mast cell activation during the responses to nasal challenge with allergen, cold, dry air, and hyperosmolar solutions. J Allergy Clin Immunol 89:1098–110PubMedCrossRefGoogle Scholar
  79. 79.
    Shaw RJ, Fitzharris P, Cromwell O, et al (1985) Allergen-induced release of sulphidopeptide leukotrienes (SRS-A) and LTB4 in allergic rhinitis. Allergy 40:1–6PubMedCrossRefGoogle Scholar
  80. 80.
    Baraniuk JN (1997) Pathogenesis of allergic rhinitis. J Allergy Clin Immunol 99:S763–72PubMedCrossRefGoogle Scholar
  81. 81.
    Sanico AM, Koliatsos VE, Stanisz AM, et al (1999) Neural hyperresponsiveness and nerve growth factor in allergic rhinitis. Int Arch Allergy Immunol 118:154–8PubMedCrossRefGoogle Scholar
  82. 82.
    Sanico AM, Stanisz AM, Gleeson TD, et al (2000) Nerve growth factor expression and release in allergic inflammatory disease of the upper airways. Am J Respir Crit Care Med 161:1631–5PubMedGoogle Scholar
  83. 83.
    Pawankar R, Okuda M, Yssel H, et al (1997) Nasal mast cells exhibit increased expression of the FceRI, CD40L, IL-4 and IL-13 and can induce IgE synthesis in B cells. J Clin Invest 99:1492–1499PubMedCrossRefGoogle Scholar
  84. 84.
    Welker P, Grabbe J, Gibbs B, et al (2000) Nerve growth factor-beta induces mast-cell marker expression during in vitro culture of human umbilical cord blood cells. Immunology 99:418–26PubMedCrossRefGoogle Scholar
  85. 85.
    Pastorello EA., Incorvaia C, Ortolani C, et al (1995) Studies on the relationship between the level of specific IgE antibodies and the clinical expression of allergy: 1. Definition of levels distinguishing patients with symptomatic from patients with asymptomatic allergy to common allergens. J Allergy Clin Immunol 96:580PubMedCrossRefGoogle Scholar
  86. 86.
    Pawankar R (2001) Revisting the roles of mast cells and its relation to local IgE synthesis. Am J Rhinol 14:309CrossRefGoogle Scholar
  87. 87.
    Durham SR., Gould HJ, Thienes CP, et al (1997) Expression of epsilon germ-line gene transcripts and mRNA for the epsilon heavy chain of IgE in nasal B cells and the effects of topical corticosteroid. Eur J Immunol 27:2899PubMedCrossRefGoogle Scholar
  88. 88.
    Pawankar R, Yamagishi S, Takizawa R, et al (2000) Local IgE synthesis: Its functional significance and strategy for new therapy. J Rhinol 39:69Google Scholar
  89. 89.
    Kalesnikoff J, Huber M, Lam V, et al (2001) Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 14:801–1PubMedCrossRefGoogle Scholar
  90. 90.
    Cruse G, Kaur D, Yang W, et al (2005) Activation of human lung mast cells by monomeric immunoglobulin E. Eur Respir J 25:858–63PubMedCrossRefGoogle Scholar
  91. 91.
    Matsuda K, Piliponsky AM, Iikura M, et al (2005) Monomeric IgE enhances human mast cell chemokine production: IL-4 augments and dexamethasone suppresses the response. J Allergy Clin Immunol 116:1357–63PubMedCrossRefGoogle Scholar
  92. 92.
    Burrows B, Martinez FD, Halonen M, et al (1989) Association of asthma with serum IgE levels and skin-test reactivity to allergens. N Engl J Med 320:271–7PubMedGoogle Scholar
  93. 93.
    Sears MR, Burrows B, Flannery EM, et al (1991) Relation between airway responsiveness and serum IgE in children with asthma and in apparently normal children. N Engl J Med 325:1067–71PubMedGoogle Scholar
  94. 94.
    Takeda K, Hamelmann E, Joetham A, et al (2007) Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice. J Exp Med 186:449–54. The Authors Journal compilation _c Blackwell Publishing Ltd, Clinical and Experimental Allergy, 38:4–18 Mast cells in allergic disease 15CrossRefGoogle Scholar
  95. 95.
    Williams CM, Galli SJ (2000) Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J Exp Med 192:455–62PubMedCrossRefGoogle Scholar
  96. 96.
    Taube C, Wei X, Swasey CH, et al (2004) Mast cells, Fc epsilon RI, and IL-13 are required for development of airway hyperresponsiveness after aerosolized allergen exposure in the absence of adjuvant. J Immunol 172:6398–406PubMedGoogle Scholar
  97. 97.
    Saito H, Okayama Y (2005) Mast cells in allergic diseases. New York: Karger, BaselGoogle Scholar
  98. 98.
    Brightling CE, Symon FA, Holgate ST, et al (2003) Interleukin-4 and -13 expression is colocalized to mast cells within the airway smooth muscle in asthma. Clin Exp Allergy 33:1711–6PubMedCrossRefGoogle Scholar
  99. 99.
    Hsieh FH, Lam BK, Penrose JF, et al (2001) Thelper cell type 2 cytokines coordinately regulate IgE-dependent cysteinyl leukotriene production by human cord blood-derived mast cells: profound induction of leukotriene C4 synthase expression by IL-4. J Exp Med 193:123–33PubMedCrossRefGoogle Scholar
  100. 100.
    Ochi H, De Jesus NH, Hsieh FH, et al (2000) IL-4 and -5 prime human mast cells for different profiles of IgE-dependent cytokine production. Proc Natl Acad Sci USA 97:10509–13PubMedCrossRefGoogle Scholar
  101. 101.
    Galli SJ (2000) The c-kit receptor, stem cell factor, and mast cells. What each is teaching us about the others. Am J Pathol 142:965–74Google Scholar
  102. 102.
    Metcalfe DD (1997) Mast cells. Physiol Rev 77:1033–79PubMedGoogle Scholar
  103. 103.
    Matsushima H, Yamada N, Matsue H, et al (2004) TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol 173:531–41PubMedGoogle Scholar
  104. 104.
    Amin K, Ludviksdottir D, Janson C, et al (2000) Inflammation and structural changes in the airways of patients with atopic and nonatopic asthma. BHR Group. Am J Respir Crit Care Med 162:2295–301PubMedGoogle Scholar
  105. 105.
    Ribatti D, Polimeno G, Vacca A, et al (2002) Correlation of bone marrow angiogenesis and mast cells with tryptase activity in myelodysplastic syndromes. Leukemia 16:1680–84PubMedCrossRefGoogle Scholar
  106. 106.
    Boesiger J, Tsai M, Maurer M, et al (1998) Mast cells can secrete vascular permeability factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of Fcepsilon receptor I expression. J Exp Med 188: 1135–45PubMedCrossRefGoogle Scholar
  107. 107.
    Grutzkau A, Kruger-Krasagakes S, Baumeister H, et al (1998) Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell 9:875–84PubMedGoogle Scholar
  108. 108.
    Abdel-Majid RM, Marshall JS (2004) Prostaglandin E2 induces degranulation- independent production of vascular endothelial growth factor by human mast cells. J Immunol 172:1227–36PubMedGoogle Scholar
  109. 109.
    Abelson MB (2001) Allergic diseases of the eye. Philadelphia: W.B. SaundersGoogle Scholar
  110. 110.
    Friedlaender MH (1991) Current concepts in ocular allergy. Ann Allergy 67:5–10, 13PubMedGoogle Scholar
  111. 111.
    Ono SJ, Abelson MB (2005) Allergic conjunctivitis: update on pathophysiology and prospects for future treatment. J Allergy Clin Immunol 115:118–22PubMedCrossRefGoogle Scholar
  112. 112.
    Allansmith MR (1990) Immunology of the external ocular tissues. J Am Optom Assoc 61:S16–22PubMedGoogle Scholar
  113. 113.
    Macleod JD, Anderson DF, Baddeley SM, et al (1997) Immunolocalization of cytokines to mast cells in normal and allergic conjunctiva. Clin Exp Allergy 27:1328–34PubMedCrossRefGoogle Scholar
  114. 114.
    Church MK, McGill JI (2002) Human ocular mast cells. Curr Opin Allergy Clin Immunol 2:419–22PubMedCrossRefGoogle Scholar
  115. 115.
    Ahluwalia P, Anderson DF, Wilson SJ, et al (2001) Nedocromil sodium and levocabastine reduce the symptoms of conjunctival allergen challenge by different mechanisms. J Allergy Clin Immunol 108:449–54PubMedCrossRefGoogle Scholar
  116. 116.
    Nakamura T, Ohbayashi M, Toda M, et al (2005) A specific CCR3 chemokine receptor antagonist inhibits both early and late phase allergic inflammation in the conjunctiva. Immunol Res 33:213–21PubMedCrossRefGoogle Scholar
  117. 117.
    Damsgaard TE, Olesen AB, Sorensen FB, et al (1997) Mast cells and atopic dermatitis. Stereological quantification of mast cells in atopic dermatitis and normal human skin. Arch Dermatol Res 289:256–60PubMedCrossRefGoogle Scholar
  118. 118.
    Jarvikallio A, Naukkarinen A, Harvima IT, et al (1997) Quantitative analysis of tryptase- and chymase containing mast cells in atopic dermatitis and nummular eczema. Br J Dermatol 136:871–7PubMedCrossRefGoogle Scholar
  119. 119.
    Groneberg DA, Bester C, Grutzkau A, et al (2005) Mast cells and vasculature in atopic dermatitis – potential stimulus of neoangiogenesis. Allergy 60:90–7PubMedCrossRefGoogle Scholar
  120. 120.
    Steinhoff M, Neisius U, Ikoma A, et al (2003) Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci 23:6176–80PubMedGoogle Scholar
  121. 121.
    Badertscher K, Bronnimann M, Karlen S, et al (2005) Mast cell chymase is increased in chronic atopic dermatitis but not in psoriasis. Arch Dermatol Res 296:503–6PubMedCrossRefGoogle Scholar
  122. 122.
    Weidinger S, Rummler L, Klopp N, et al (2005) Association study of mast cell chymase polymorphisms with atopy. Allergy 60:1256–61PubMedCrossRefGoogle Scholar
  123. 123.
    Fischer M, Harvima IT, Carvalho RF, et al (2006) Mast cell CD30 ligand is upregulated in cutaneous inflammation and mediates degranulation-independent chemokine secretion. J Clin Invest 116:2748–56PubMedCrossRefGoogle Scholar
  124. 124.
    Jarvikallio A, Harvima IT, Naukkarinen A (2003) Mast cells, nerves and neuropeptides in atopic dermatitis and nummular eczema. Arch Dermatol Res 295:2–7PubMedGoogle Scholar
  125. 125.
    Ansel JC, Kaynard AH, Armstrong CA, et al (1996) Skin-nervous system interactions. J Invest Dermatol 106:198–204PubMedCrossRefGoogle Scholar
  126. 126.
    Groneberg DA, Serowka F, Peckenschneider N, et al (2005) Gene expression and regulation of nerve growth factor in atopic dermatitis mast cells and the human mast cell line-1. J Neuroimmunol 161:87–92PubMedCrossRefGoogle Scholar
  127. 127.
    Groneberg DA, Welker P, Fischer TC, et al (2003) Down-regulation of vasoactive intestinal polypeptide receptor expression in atopic dermatitis. J Allergy Clin Immunol 111:1099–105PubMedCrossRefGoogle Scholar
  128. 128.
    Caughey GH (2006) Tryptase genetics and anaphylaxis. J Allergy Clin Immunol 117:1411–4PubMedCrossRefGoogle Scholar
  129. 129.
    Schwartz LB (2004) Effector cells of anaphylaxis: mast cells and basophils. Novartis Found Symp 257:65–74; discussion 74–69, 98–100, 276–85xPubMedCrossRefGoogle Scholar
  130. 130.
    Schwartz LB, Yunginger JW, Miller J, et al (1989) Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis. J Clin Invest 83:1551–5PubMedCrossRefGoogle Scholar
  131. 131.
    Gilfillan AM, Tkaczyk C (2006) Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 6:218–30PubMedCrossRefGoogle Scholar
  132. 132.
    Tkaczyk C, Okayama Y, Woolhiser MR, et al (2002) Activation of human mast cells through the high affinity IgG receptor. Mol Immunol 38:1289–93PubMedCrossRefGoogle Scholar
  133. 133.
    Woolhiser MR, Brockow K, Metcalfe DD (2004) Activation of human mast cells by aggregated IgG through FcgammaRI: additive effects of C3a. Clin Immunol 110:172–80PubMedCrossRefGoogle Scholar
  134. 134.
    Okayama Y, Kirshenbaum AS, Metcalfe DD (2000) Expression of a functional high-affinity IgG receptor, Fc gamma RI, on human mast cells: up-regulation by IFN-gamma. J Immunol 164:4332–9PubMedGoogle Scholar
  135. 135.
    Genovese A, Stellato C, Patella V, et al (1996) Contrast media are incomplete secretagogues acting on human basophils and mast cells isolated from heart and lung, but not skin tissue. Int J Clin Lab Res 26:192–8PubMedCrossRefGoogle Scholar
  136. 136.
    Marone G, Bova M, Detoraki A, et al (2004) The human heart as a shock organ in anaphylaxis. Novartis Found Symp 257:133–49; discussion 149–60, 276–185PubMedCrossRefGoogle Scholar
  137. 137.
    Montrucchio G, Alloatti G, Camussi G (2000) pathophysiology. Physiol Rev 80:1669–9PubMedGoogle Scholar
  138. 138.
    McCurdy JD, Olynych TJ, Maher LH, et al (2003) Cutting edge: distinct Toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. J Immunol 170:1625–9PubMedGoogle Scholar
  139. 139.
    Kulka M, Alexopoulou L, Flavell RA, et al (2004) Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 114:174–82PubMedCrossRefGoogle Scholar
  140. 140.
    Applequist SE, Wallin RP, Ljunggren HG (2002) Variable expression of Toll-like receptor in murine innate and adaptive immune cell lines. Int Immunol 14:1065–74PubMedCrossRefGoogle Scholar
  141. 141.
    Diebold SS, Kaisho T, Hemmi H, et al (2004) Innate antiviral responses by means of TLR7mediated recognition of single-stranded RNA. Science 303(5663):1529–31PubMedCrossRefGoogle Scholar
  142. 142.
    Florian S, Sonneck K, Czerny M, et al (2006) Detection of novel leukocyte differentiation antigens on basophils and mast cells by HLDA8 antibodies. Allergy 61:1054–62PubMedCrossRefGoogle Scholar
  143. 143.
    Füreder W, Agis H, Semper H, et al (1995) Differential response of human basophils and mast cells to recombinant chemokines. Ann Hematol 70:251–8PubMedCrossRefGoogle Scholar
  144. 144.
    Füreder W, Agis H, Willheim M, et al (1995) Differential expression of complement receptors on human basophils and mast cells. Evidence for mast cell heterogeneity and CD88/ C5aR expression on skin mast cells. J Immunol 155:3152–60PubMedGoogle Scholar
  145. 145.
    Ghebrehiwet B, Kew RR, Gruber BL, et al (1995) Murine mast cells express two types of C1q receptors that are involved in the induction of chemotaxis and chemokinesis. J Immunol 155:2614–9PubMedGoogle Scholar
  146. 146.
    Hasan U, Chaffois C, Gaillard C, et al (2005) Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol 174:2942–50PubMedGoogle Scholar
  147. 147.
    Heil F, Hemmi H, Hochrein H, et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–9PubMedCrossRefGoogle Scholar
  148. 148.
    Inomata N, Tomita H, Ikezawa Z, et al (2005) Differential gene expression profile between cord blood progenitor-derived and adult progenitor-derived human mast cells. Immunol Lett 98:265–71PubMedCrossRefGoogle Scholar
  149. 149.
    Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19:24–32PubMedCrossRefGoogle Scholar
  150. 150.
    Komiya A, Nagase H, Okugawa S, et al (2006) Expression and function of toll-like receptors in human basophils. Int Arch Allergy Immunol 140:S23–S27CrossRefGoogle Scholar
  151. 151.
    Kubo Y, Fukuishi N, Yoshioka M, et al (2007) Bacterial components regulate the expression of Toll-like receptor 4 on human mast cells. Inflamm Res 56:70–5PubMedCrossRefGoogle Scholar
  152. 152.
    Malaviya R, Georges A (2002) Regulation of mast cell-mediated innate immunity during early response to bacterial infection. Clin Rev Allergy Immunol 22:189–204PubMedCrossRefGoogle Scholar
  153. 153.
    Malaviya R, Ross EA, MacGregor JI, et al (1994) Mast cell phagocytosis of FimHexpressing enterobacteria. J Immunol 152:1907–14PubMedGoogle Scholar
  154. 154.
    Marshall JS (2004) Mast-cell responses to pathogens. Nat Rev Immunol 4:787–99PubMedCrossRefGoogle Scholar
  155. 155.
    Miyake K (2007) Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19:3–10PubMedCrossRefGoogle Scholar
  156. 156.
    Rosenkranz AR, Coxon A, Maurer M, et al (1998) Impaired mast cell development and innate immunity in Mac-1 (CD11b/CD18, CR3)-deficient mice. J Immunol 161:6463–7PubMedGoogle Scholar
  157. 157.
    Sabroe I, Jones EC, Usher LR, et al (2002) Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in leukocyte lipopolysaccharide responses. J Immunol 168:4701–10PubMedGoogle Scholar
  158. 158.
    Thangam EB, Venkatesha RT, Zaidi AK, et al (2005) Airway smooth muscle cells enhance C3a-induced mast cell degranulation following cell-cell contact. FASEB J 19:798–800PubMedGoogle Scholar
  159. 159.
    Wu L, Feng BS, He SH, et al (2007) Bacterial peptidoglycan breaks down intestinal tolerance via mast cell activation: The role of TLR2 and NOD2. Immunol Cell Biol 85:538–45PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jean S. Marshall
    • 1
  • Michael G. Brown
    • 1
  • Ruby Pawankar
    • 2
  1. 1.Department of Microbiology and ImmunologyDalhousie UniversityHalifaxCanada
  2. 2.Nippon Medical SchoolBunkyo-kuJapan

Personalised recommendations