IgE and the High-Affinity Receptor, FcεRI: The IgE-CD23 Interaction

  • Donald Jr. MacGlashan
Part of the Allergy Frontiers book series (ALLERGY, volume 2)


High and low affinity receptors for IgE antibody are key molecular components of the atopic condition because they allow cells to bind IgE, conferring to the cell a sensitivity to substances in the environment. But there are many facets to the life cycle of Fc?RI and Fc?RII, beginning with events that modulate their presence on the cell surface and in the case of Fc?RII, including events which generate a soluble form of Fc?RII. This chapter will explore recent observations concerning the regulation of these receptors and regulation of immune responses by these receptors.


Mast Cell Allergy Clin Immunol Human Mast Cell Human Basophil Skin Mast Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xiao, W, Nishimoto, H, Hong, H, Kitaura, J, Nunomura, S, Maeda-Yamamoto, M, Kawakami, Y, Lowell, CA, Ra, C, Kawakami, T (2005) Positive and negative regulation of mast cell activation by Lyn via the FcepsilonRI. J Immunol 175, 6885–6892.PubMedGoogle Scholar
  2. 2.
    Cauvi, DM, Tian, X, von Loehneysen, K, Robertson, MW (2006) Transport of the IgE receptor alpha-chain is controlled by a multicomponent intracellular retention signal. J Biol Chem 281, 10448–10460.PubMedCrossRefGoogle Scholar
  3. 3.
    Letourneur, O, Sechi, S, Willette-Brown, J, Robertson, MW, Kinet, JP (1995) Glycosylation of human truncated Fc epsilon RI alpha chain is necessary for efficient folding in the endoplasmic reticulum. J Biol Chem 270, 8249–8256.PubMedCrossRefGoogle Scholar
  4. 4.
    Fiebiger, E, Tortorella, D, Jouvin, MH, Kinet, JP, Ploegh, HL (2005) Cotranslational endoplasmic reticulum assembly of FcepsilonRI controls the formation of functional IgE-binding receptors. J Exp Med 201, 267–277.PubMedCrossRefGoogle Scholar
  5. 5.
    Donnadieu, E, Jouvin, MH, Rana, S, Moffatt, MF, Mockford, EH, Cookson, WO, Kinet, JP (2003) Competing functions encoded in the allergy-associated F(c)epsilonRIbeta gene. Immunity 18, 665–674.PubMedCrossRefGoogle Scholar
  6. 6.
    Miller, L, Blank, U, Metzger, H, Kinet, JP (1989) Expression of high-affinity binding of human immunoglobulin E by transfected cells. Science 244, 334–337.PubMedCrossRefGoogle Scholar
  7. 7.
    Donnadieu, E, Jouvin, MH, Kinet, JP (2000) A second amplifier function for the allergy-associated Fc(epsilon)RI-beta subunit. Immunity 12, 515–523.PubMedCrossRefGoogle Scholar
  8. 8.
    Seminario, MC, Saini, SS, MacGlashan, DW, Jr., Bochner, BS (1999) Intracellular expression and release of Fc epsilon RI alpha by human eosinophils. J Immunol 162, 6893–6900.PubMedGoogle Scholar
  9. 9.
    Gounni, AS, Lamkhioued, B, Ochiai, K, Tanaka, Y, Delaporte, E, Capron, A, Kinet, JP, Capron, M (1994) High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367, 183–186.PubMedCrossRefGoogle Scholar
  10. 10.
    Saini, S, Richardson, JJ, Wofsy, C, Lavens-Phillips, Bochner, B, MacGlashan, DW, Jr. (2001) Expression and modulation of FceRIa and FceRIb in human blood basophils. J Allergy Clin Immunol 107, 832–841.PubMedCrossRefGoogle Scholar
  11. 11.
    Miura, K, Saini, SS, Gauvreau, G, MacGlashan, DW, Jr. (2001) Differences in functional consequences and signal transduction induced by IL-3, IL-5 and NGF in human basophils. J Immunol 167, 2282–2291.PubMedGoogle Scholar
  12. 12.
    MacGlashan, DW, Jr. (2007) Endocytosis, re-cycling and degradation of unoccupied FceRI in human basophils. J Leukoc Biol 82, 1003–1010.PubMedCrossRefGoogle Scholar
  13. 13.
    Kitaura, J, Song, J, Tsai, M, Asai, K, Maeda-Yamamoto, M, Mocsai, A, Kawakami, Y, Liu, FT, Lowell, CA, Barisas, BG, Galli, SJ, Kawakami, T (2003) Evidence that IgE molecules mediate a spectrum of effects on mast cell survival and activation via aggregation of the FcepsilonRI. Proc Natl Acad Sci USA 100, 12911–12916.PubMedCrossRefGoogle Scholar
  14. 14.
    Kalesnikoff, J, Huber, M, Lam, V, Damen, JE, Zhang, J, Siraganian, RP, Krystal, G (2001) Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 14, 801–811.PubMedCrossRefGoogle Scholar
  15. 15.
    Matsuda, K, Piliponsky, AM, Iikura, M, Nakae, S, Wang, EW, Dutta, SM, Kawakami, T, Tsai, M, Galli, SJ (2005) Monomeric IgE enhances human mast cell chemokine production: IL-4 augments and dexamethasone suppresses the response. J Allergy Clin Immunol 116, 1357–1363.PubMedCrossRefGoogle Scholar
  16. 16.
    Cruse, G, Kaur, D, Yang, W, Duffy, SM, Brightling, CE, Bradding, P (2005) Activation of human lung mast cells by monomeric immunoglobulin E. Eur Respir J 25, 858–863.PubMedCrossRefGoogle Scholar
  17. 17.
    Kitaura, J, Xiao, W, Maeda-Yamamoto, M, Kawakami, Y, Lowell, CA, Kawakami, T (2004) Early divergence of Fc epsilon receptor I signals for receptor up-regulation and internalization from degranulation, cytokine production, and survival. J Immunol 173, 4317–4323.PubMedGoogle Scholar
  18. 18.
    Goldstein, B, Dembo, M, Malveaux, FJ (1979) Some quantitative aspects of the passive sensitization of human basophils. J. Immunol. 122, 830–833.PubMedGoogle Scholar
  19. 19.
    MacGlashan, DW, Jr., Lichtenstein, LM, McKenzie-White, J, Chichester, K, Henry, AJ, Sutton, BJ, Gould, HJ (1999) Upregulation of FceRI on human basophils by IgE antibody is mediated by interaction of IgE with FceRI. J Allergy Clin Immunol 104, 492–498.PubMedCrossRefGoogle Scholar
  20. 20.
    MacGlashan, DW, Jr., Xia, HZ, Schwartz, LB, Gong, JP (2001) IgE-regulated expression of FceRI in human basophils: control by regulated loss rather than regulated synthesis. J Leukoc Biol 70, 207–218.PubMedGoogle Scholar
  21. 21.
    MacGlashan, DW, Jr., Bochner, BS, Adelman, DC, Jardieu, PM, Togias, A, Mckenzie-White, J, Sterbinsky, SA, Hamilton, RG, Lichtenstein, LM (1997) Down-regulation of FceRI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J Immunol 158, 1438–1445.PubMedGoogle Scholar
  22. 22.
    Malveaux, FJ, Conroy, MC, Adkinson, NFJ, Lichtenstein, LM (1978) IgE receptors on human basophils. Relationship to serum IgE concentration. J Clin Invest 62, 176–181.PubMedCrossRefGoogle Scholar
  23. 23.
    Sihra, BS, Kon, OM, Grant, JA, Kay, AB (1997) Expression of high-affinity IgE receptors (Fc epsilon RI) on peripheral blood basophils, monocytes, and eosinophils in atopic and non-atopic subjects: relationship to total serum IgE concentrations. J Allergy Clin Immunol 99, 699–706.PubMedCrossRefGoogle Scholar
  24. 24.
    Saini, SS, Klion, AD, Holland, SM, Hamilton, RG, Bochner, BS, Macglashan, DW, Jr. (2000) The relationship between serum IgE and surface levels of FcepsilonR on human leukocytes in various diseases: correlation of expression with FcepsilonRI on basophils but not on monocytes or eosinophils. J Allergy Clin Immunol 106, 514–520.PubMedCrossRefGoogle Scholar
  25. 25.
    MacGlashan, DW, Jr. (1993) Releasability of human basophils: cellular sensitivity and maximal histamine release are independent variables. J Allergy Clin Immunol 91, 605–615.PubMedCrossRefGoogle Scholar
  26. 26.
    MacGlashan, DW, Jr. (2007) Relationship between Syk and SHIP expression and secretion from human basophils in the general population. J Allergy Clin Immunol 119, 626–633.PubMedCrossRefGoogle Scholar
  27. 27.
    Erwin, EA, Ronmark, E, Wickens, K, Perzanowski, MS, Barry, D, Lundback, B, Crane, J, Platts-Mills, TA (2007) Contribution of dust mite and cat specific IgE to total IgE: relevance to asthma prevalence. J Allergy Clin Immunol 119, 359–365.PubMedCrossRefGoogle Scholar
  28. 28.
    MacGlashan, DW, Jr., Peters, SP, Warner, J, Lichtenstein, LM (1986) Characteristics of human basophil sulfidopeptide leukotriene release: releasability defined as the ability of the basophil to respond to dimeric cross-links. J Immunol 136, 2231–2239.PubMedGoogle Scholar
  29. 29.
    MacGlashan, D (2004) Loss of receptors and IgE in vivo during treatment with anti-IgE antibody. J Allergy Clin Immunol 114, 1472–1474.PubMedCrossRefGoogle Scholar
  30. 30.
    Beck, LA, Marcotte, GV, MacGlashan, D, Togias, A, Saini, S (2004) Omalizumab-induced reductions in mast cell Fce psilon RI expression and function. J Allergy Clin Immunol 114, 527–530.PubMedCrossRefGoogle Scholar
  31. 31.
    Saini, S, Bloom, DC, Bieneman, A, Vasagar, K, Togias, A, Schroeder, J (2004) Systemic effects of allergen exposure on blood basophil IL-13 secretion and FcepsilonRIbeta. J Allergy Clin Immunol 114, 768–774.PubMedCrossRefGoogle Scholar
  32. 32.
    Pawankar, R, Okuda, M, Yssel, H, Okumura, K, Ra, C (1997) Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the FceRI, CD40 L, IL-4 and IL-13 and can induce IgE synthesis in B cells. J Clin Invest 99, 1492–1499.PubMedCrossRefGoogle Scholar
  33. 33.
    Pawankar, R, Ra, C (1998) IgE-Fc epsilonRI-mast cell axis in the allergic cycle. Clin Exp Allergy 28 (Suppl 3), 6–14.PubMedGoogle Scholar
  34. 34.
    Yamaguchi, M, Sayama, K, Yano, K, Lantz, CS, Noben-Trauth, N, Ra, C, Costa, JJ, Galli, SJ (1999) IgE enhances Fc epsilon receptor I expression and IgE-dependent release of histamine and lipid mediators from human umbilical cord blood-derived mast cells: synergistic effect of IL-4 and IgE on human mast cell Fc epsilon receptor I expression and mediator release. J Immunol 162, 5455–5465.PubMedGoogle Scholar
  35. 35.
    Toru, H, Ra, C, Nonoyama, S, Suzuki, K, Yata, J, Nakahata, T (1996) Induction of the high-affinity IgE receptor (FceRI) on human mast cells by IL-4. Int Immunol 8, 1367–1373.PubMedCrossRefGoogle Scholar
  36. 36.
    Xia, HZ, Du, Z, Craig, S, Klisch, G, Noben-Trauth, N, Kochan, JP, Huff, TH, Irani, AM, Schwartz, LB (1997) Effect of recombinant human IL-4 on tryptase, chymase, and Fc epsilon receptor type I expression in recombinant human stem cell factor- dependent fetal liver-derived human mast cells. J Immunol 159, 2911–2921.PubMedGoogle Scholar
  37. 37.
    Zon, LI, Gurish, MF, Stevens, RL, Mather, C, Reynolds, DS, Austen, KF, Orkin, SH (1991) GATA-binding transcription factors in mast cells regulate the promoter of the mast cell carboxypeptidase A gene. J Biol Chem 266, 22948–22953.PubMedGoogle Scholar
  38. 38.
    Nishiyama, C, Yokota, T, Okumura, K, Ra, C (1999) The transcription factors elf-1 and GATA-1 bind to cell-specific enhancer elements of human high-affinity IgE receptor alpha-chain gene [In Process Citation]. J Immunol 163, 623–630.PubMedGoogle Scholar
  39. 39.
    Nishiyama, C, Hasegawa, M, Nishiyama, M, Takahashi, K, Akizawa, Y, Yokota, T, Okumura, K, Ogawa, H, Ra, C (2002) Regulation of human Fc epsilon RI alpha-chain gene expression by multiple transcription factors. J Immunol 168, 4546–4552.PubMedGoogle Scholar
  40. 40.
    Ryan, JJ, DeSimone, S, Klisch, G, Shelburne, C, McReynolds, LJ, Han, K, Kovacs, R, Mirmonsef, P, Huff, TF (1998) IL-4 inhibits mouse mast cell Fc epsilonRI expression through a STAT6- dependent mechanism. J Immunol 161, 6915–6923.PubMedGoogle Scholar
  41. 41.
    Akizawa, Y, Nishiyama, C, Hasegawa, M, Maeda, K, Nakahata, T, Okumura, K, Ra, C, Ogawa, H (2003) Regulation of human FcepsilonRI beta chain gene expression by Oct-1. Int Immunol 15, 549–556.PubMedCrossRefGoogle Scholar
  42. 42.
    Takahashi, K, Nishiyama, C, Hasegawa, M, Akizawa, Y, Ra, C (2003) Regulation of the human high affinity IgE receptor beta-chain gene expression via an intronic element. J Immunol 171, 2478–2484.PubMedGoogle Scholar
  43. 43.
    Maeda, K, Nishiyama, C, Tokura, T, Nakano, H, Kanada, S, Nishiyama, M, Okumura, K, Ogawa, H (2006) FOG-1 represses GATA-1-dependent FcepsilonRI beta-chain transcription: transcriptional mechanism of mast-cell-specific gene expression in mice. Blood 108, 262–269.PubMedCrossRefGoogle Scholar
  44. 44.
    Hasegawa, M, Nishiyama, C, Nishiyama, M, Akizawa, Y, Mitsuishi, K, Ito, T, Kawada, H, Furukawa, S, Ra, C, Okumura, K, Ogawa, H (2003) A novel -66T/C polymorphism in Fc epsilon RI alpha-chain promoter affecting the transcription activity: possible relationship to allergic diseases. J Immunol 171, 1927–1933.PubMedGoogle Scholar
  45. 45.
    Donnadieu, E, Cookson, WO, Jouvin, MH, Kinet, JP (2000) Allergy-associated polymorphisms of the FcepsilonRIbeta subunit do not impact its two amplification functions [In Process Citation]. J Immunol 165, 3917–3922.PubMedGoogle Scholar
  46. 46.
    Nishiyama, C, Akizawa, Y, Nishiyama, M, Tokura, T, Kawada, H, Mitsuishi, K, Hasegawa, M, Ito, T, Nakano, N, Okamoto, A, Takagi, A, Yagita, H, Okumura, K, Ogawa, H (2004) Polymorphisms in the Fc epsilon RI beta promoter region affecting transcription activity: a possible promoter-dependent mechanism for association between Fc epsilon RI beta and atopy. J Immunol 173, 6458–6464.PubMedGoogle Scholar
  47. 47.
    Traherne, JA, Hill, MR, Hysi, P, D'Amato, M, Broxholme, J, Mott, R, Moffatt, MF, Cookson, WO (2003) LD mapping of maternally and non-maternally derived alleles and atopy in FcepsilonRI-beta. Hum Mol Genet 12, 2577–2585.PubMedCrossRefGoogle Scholar
  48. 48.
    Tanaka, A, Ohashi, Y, Nakai, Y (1999) Decrease of serum levels of soluble CD23 during immunotherapy in patients with perennial allergic rhinitis. Ann Otol Rhinol Laryngol 108, 193–200.PubMedGoogle Scholar
  49. 49.
    Yokota, A, Yukawa, K, Yamamoto, A, Sugiyama, K, Suemura, M, Tashiro, Y, Kishimoto, T, Kikutani, H (1992) Two forms of the low-affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: identification of the critical cytoplasmic domains. Proc Natl Acad Sci USA 89, 5030–5034.PubMedCrossRefGoogle Scholar
  50. 50.
    Weskamp, G, Ford, JW, Sturgill, J, Martin, S, Docherty, AJ, Swendeman, S, Broadway, N, Hartmann, D, Saftig, P, Umland, S, Sehara-Fujisawa, A, Black, RA, Ludwig, A, Becherer, JD, Conrad, DH, Blobel, CP (2006) ADAM10 is a principal “sheddase” of the low-affinity immunoglobulin E receptor CD23. Nat Immunol 7, 1293–1298.PubMedCrossRefGoogle Scholar
  51. 51.
    Fourie, AM, Coles, F, Moreno, V, Karlsson, L (2003) Catalytic activity of ADAM8, ADAM15, and MDC-L (ADAM28) on synthetic peptide substrates and in ectodomain cleavage of CD23. J Biol Chem 278, 30469–30477.PubMedCrossRefGoogle Scholar
  52. 52.
    Moulder, K, Barton, A, Weston, B (1993) CD23-mediated homotypic cell adhesion: the role of proteolysis. Eur J Immunol 23, 2066–2071.PubMedCrossRefGoogle Scholar
  53. 53.
    Schulz, O, Laing, P, Sewell, HF, Shakib, F (1995) Der p I, a major allergen of the house dust mite, proteolytically cleaves the low-affinity receptor for human IgE (CD23). Eur J Immunol 25, 3191–3194.PubMedCrossRefGoogle Scholar
  54. 54.
    Shakib, F, Schulz, O, Sewell, H (1998) A mite subversive: cleavage of CD23 and CD25 by Der p 1 enhances allergenicity. Immunol Today 19, 313–316.PubMedCrossRefGoogle Scholar
  55. 55.
    McCloskey, N, Hunt, J, Beavil, RL, Jutton, MR, Grundy, GJ, Girardi, E, Fabiane, SM, Fear, DJ, Conrad, DH, Sutton, BJ, Gould, HJ (2007) Soluble CD23 monomers inhibit and oligomers stimulate IGE synthesis in human B cells. J Biol Chem 282, 24083–24091.PubMedCrossRefGoogle Scholar
  56. 56.
    Roberts, T, Snow, EC (1999) Cutting edge: recruitment of the CD19/CD21 coreceptor to B cell antigen receptor is required for antigen-mediated expression of Bcl-2 by resting and cycling hen egg lysozyme transgenic B cells. J Immunol 162, 4377–4380.PubMedGoogle Scholar
  57. 57.
    Venkitaraman, AR, Williams, GT, Dariavach, P, Neuberger, MS (1991) The B-cell antigen receptor of the five immunoglobulin classes. Nature 352, 777–781.PubMedCrossRefGoogle Scholar
  58. 58.
    Aubry, JP, Pochon, S, Gauchat, JF, Nueda-Marin, A, Holers, VM, Graber, P, Siegfried, C, Bonnefoy, JY (1994) CD23 interacts with a new functional extracytoplasmic domain involving N-linked oligosaccharides on CD21. J Immunol 152, 5806–5813.PubMedGoogle Scholar
  59. 59.
    Pirron, U, Schlunck, T, Prinz, JC, Rieber, EP (1990) IgE-dependent antigen focusing by human B lymphocytes is mediated by the low-affinity receptor for IgE. Eur J Immunol 20, 1547–1551.PubMedCrossRefGoogle Scholar
  60. 60.
    Casale, TB, Condemi, J, LaForce, C, Nayak, A, Rowe, M, Watrous, M, McAlary, M, Fowler-Taylor, A, Racine, A, Gupta, N, Fick, R, Della Cioppa, G (2001) Effect of omalizumab on symptoms of seasonal allergic rhinitis: a randomized controlled trial. JAMA 286, 2956–2967.PubMedCrossRefGoogle Scholar
  61. 61.
    Ong Y-E, Menzies-Gow A, Matthews J, AB, K (2004) A randomized double-blind, placebo-controlled study to assess the effects of omalizumab (a humanized monoclonal anti-IgE antibody) on early- and late-phase skin reactions and cellular infiltrate after multiple intrdermal allergen challenges. J. Allergy Clin Immunol 113, S84.CrossRefGoogle Scholar
  62. 62.
    Milgrom, H, Fick, RB, Jr., Su, JQ, Reimann, JD, Bush, RK, Watrous, ML, Metzger, WJ (1999) Treatment of allergic asthma with monoclonal anti-IgE antibody. rhuMAb- E25 Study Group. N Engl J Med 341, 1966–1973.PubMedCrossRefGoogle Scholar
  63. 63.
    Humbert, M, Beasley, R, Ayres, J, Slavin, R, Hebert, J, Bousquet, J, Beeh, KM, Ramos, S, Canonica, GW, Hedgecock, S, Fox, H, Blogg, M, Surrey, K (2005) Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy 60, 309–316.PubMedCrossRefGoogle Scholar
  64. 64.
    Saini, SS, MacGlashan, DW, Jr., Sterbinsky, SA, Togias, A, Adelman, DC, Lichtenstein, LM, Bochner, BS (1999) Down-regulation of human basophil IgE and FceRIa surface densities and mediator release by anti-IgE infusions is reversible in vitro and in vivo. J Immunol 162, 5623–5630.Google Scholar
  65. 65.
    Haak-Frendscho, M, Robbins, K, Lyon, R, Shields, R, Hooley, J, Schoenhoff, M, Jardieu, P (1994) Administration of an anti-IgE antibody inhibits CD23 expression and IgE production in vivo. Immunology 82, 306–313.PubMedGoogle Scholar
  66. 66.
    Rosenwasser, LJ, Busse, WW, Lizambri, RG, Olejnik, TA, Totoritis, MC (2003) Allergic asthma and an anti-CD23 mAb (IDEC-152): results of a phase I, single-dose, dose-escalating clinical trial. J Allergy Clin Immunol 112, 563–570.PubMedCrossRefGoogle Scholar
  67. 67.
    Rosenwasser, LJ, Meng, J (2005) Anti-CD23. Clin Rev Allergy Immunol 29, 61–72.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Donald Jr. MacGlashan
    • 1
  1. 1.Johns Hopkins Asthma and Allergy CenterBaltimoreUSA

Personalised recommendations