Neuroregulation of Mucosal Vasculature

  • Alfredo Chetta
  • Giovanna Pisi
  • Dario Olivieri
Part of the Allergy Frontiers book series (ALLERGY, volume 2)


The profuse microvasculature, present in the airway mucosa, can play a key role in normal homeostasis as well as in airway inflammation. An intricate network of efferent and afferent autonomic nerves regulate the mucosal airway vessels. The nerve/vessel interplay is complex and not yet completely clarified. In response to inspired air conditions, the sensory nerves can recruit appropriate reflexes, which can induce different vascular processes, such as vasodilatation, vasoconstriction, plasma extravasation and exudation. Additionally, the stimulation of C fibres may result in an axon local reflex with antidromic conduction down afferent nerve collaterals and release of sensory neuropeptides, which in turn may act on the mucosal vasculature to promote vasodilatation and microvascular leakage. The neurogenic inflammation may play an important role in allergic diseases, such as asthma, as well as in COPD, a smoking-related disease. The pharmacological modulation of neurogenic inflammation may represent an important approach to chronic inflammatory airway diseases. This chapter deals with the interactions of vessels and nerves within the airway mucosa under healthy conditions and in inflammatory diseases.


Airway Smooth Muscle Human Airway Bronchial Artery Neurogenic Inflammation Submucosal Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Demello DE (2006) Development origins of the bronchial vasculature: experimental approaches to study the structure and function of bronchial vasculature. In: Lazaar A (ed) Bronchial vascular remodelling in asthma and COPD. Informa, New York, pp 1–23Google Scholar
  2. 2.
    Wilson J (2000) The bronchial microcirculation in asthma. Clin Exp Allergy 30:51–53PubMedCrossRefGoogle Scholar
  3. 3.
    Chetta A, Zanini A, Torre O, Olivieri D (2007) Vascular remodelling and angiogenesis in asthma: morphological aspects and pharmacological modulation. Inflamm Allergy Drug Targets 6:41–45PubMedCrossRefGoogle Scholar
  4. 4.
    Laitinen LA (1988) Detailed analysis of neural elements in human airways. In: Kaliner MA, Barnes PJ (eds) The airways. Neural control in health and disease. Marcel Dekker, New York, pp 35–56Google Scholar
  5. 5.
    Widdicombe J (1986) The physiology of the nose. Clin Chest Med 7:159–170PubMedGoogle Scholar
  6. 6.
    Cauna N (1982) Blood and nerve supply of the nasal lining. In: Proctor DF, Anderson I (eds) The nose: upper airway physiology and the atmospheric environment. Elsevier Biomedical Press BV, Amsterdam, pp 45–69Google Scholar
  7. 7.
    Corfield DR, Webber SE, Widdicombe JG (1993) Distribution of blood flow in the perfused tracheae of sheep: a search for arteriovenous anastomoses. J Appl Physiol 74:1856–1861PubMedGoogle Scholar
  8. 8.
    Grevers G, Hermann U (1987) Fenestrated endothelia in vessels of the nasal mucosa: an electron microscopic study in the rabbit. Arch Otolaryngol 244:55–60Google Scholar
  9. 9.
    Persson CGA (1988) Plasma exudation and asthma. Lung 166:1–23PubMedCrossRefGoogle Scholar
  10. 10.
    Widdicombe J (1993) Why are the airways so vascular? Thorax 48:290–295PubMedCrossRefGoogle Scholar
  11. 11.
    Wagner EM (1997) Bronchial circulation. In: Crystal Rg, West JB, Weibel ER, Barnes PJ (eds) The lung: scientific foundations. 2nd ed. Lippincott-Raven, Philadelphia, PA, pp 1093–1105Google Scholar
  12. 12.
    Deffebach ME, Charan NB, Lakshminarayan S, Butler J (1987) The bronchial circulation. Small, but a vital attribute of the lung. Am Rev Respir Dis 135:463–481Google Scholar
  13. 13.
    Widdicombe J (1993) The airway vasculature. Exp Physiol 78:433–452PubMedGoogle Scholar
  14. 14.
    Kuwano K, Bosken CH, Pare PD, Bai TR, Wiggs BR, Hogg JC (1993) Small airways dimensions in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 148:1220–1225PubMedGoogle Scholar
  15. 15.
    White MV (1995) Muscarinic receptors in human airways. J Allergy Clin Immun 95:1065–1068PubMedCrossRefGoogle Scholar
  16. 16.
    Zaagsma J, Roffel AF, Meurs H (1997) Muscarinic control of airway function. Life Sci 60:1061–1068PubMedCrossRefGoogle Scholar
  17. 17.
    Wasicko MJ, Leiter JC, Erlichman JS, Strobel RJ, Bartlett D (1991) Nasal and pharyngeal resistance after topical mucosal vasoconstriction in normal humans. Am Rev Respir Dis 144:1048–1052PubMedGoogle Scholar
  18. 18.
    Lacroix JS, Anggård A, Hökfelt T, O'Hare MM, Fahrenkrug J, Lundberg JM (1990) Neuropeptide Y: presence in sympathetic and parasympathetic innervation of the nasal mucosa. Cell Tissue Res 259:119–128PubMedCrossRefGoogle Scholar
  19. 19.
    Spina D, Rigby PJ, Paterson JW, Goldie RG (1989) Alpha 1-adrenoceptor function and auto-radiographic distribution in human asthmatic lung. Brit J Pharmacol 97:701–708Google Scholar
  20. 20.
    Lacroix JS (1989) Adrenergic and non-adrenergic mechanisms in sympathetic vascular control of the nasal mucosa. Acta Physiol Scand Suppl 581:1–63PubMedGoogle Scholar
  21. 21.
    Druce HM, Bonner RF, Patow C, Choo P, Summers RJ, Kaliner MA (1984) Response of nasal blood flow to neurohormones as measured by laser-Doppler velocimetry. J Appl Physiol 57:1276–1283PubMedGoogle Scholar
  22. 22.
    Carstairs JR, Nimmo AJ, Barnes PJ (1985) Autoradiographic visualization of beta-adreno-ceptor subtypes in human lung. Am Rev Respir Dis 132:541–547PubMedGoogle Scholar
  23. 23.
    McLean J, Mathews K, Ciarkowski A, Brayton PR, Solomon RW (1976) The effects of topical saline and isoproterenol on nasal airway resistance. J Allergy Clin Immun 58:563–574PubMedCrossRefGoogle Scholar
  24. 24.
    Mullol J, Raphael GD, Lundgren JD, Baraniuk JN, Mérida M, Shelhamer JH, Kaliner MA (1992) Comparison of human nasal mucosal secretion in vivo and in vitro. J Allergy Clin Immun 89:584–592PubMedCrossRefGoogle Scholar
  25. 25.
    Barnes PJ, Baraniuk JN, Belvisi MG (1991) Neuropeptides in the respiratory tract. Part II. Am Rev Respir Dis 144:1391–1399Google Scholar
  26. 26.
    Lacroix JS, Ulman LG, Potter EK (1994) Sympathetic and parasympathetic interaction in vascular control of the nasal mucosa in anaesthetized cats. J Physiol 480:325–331PubMedGoogle Scholar
  27. 27.
    Baraniuk JN, Druce HM (1998) Neuroregulation of mucosal vasculature In: Holgate ST, Busse WW (eds) Inflammatory mechanisms in asthma. Marcel Dekker, New York, pp 619–637Google Scholar
  28. 28.
    Widdicombe JG (1998) Autonomic regulation. i-NANC/e-NANC. Am J Respir Crit Care Med 158: S171–S175PubMedGoogle Scholar
  29. 29.
    Richardson JB (1981) Noradrenergic inhibitory innervation of the lung. Lung 159:315–322PubMedCrossRefGoogle Scholar
  30. 30.
    Belvisi MG, Ward JK, Mitchell JA, Barnes PJ (1995) Nitric oxide as a neurotransmitter in human airways. Arch Int Pharmacodyn Ther 329:97–110PubMedGoogle Scholar
  31. 31.
    Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G (2004) Nitric oxide in health and disease of the respiratory system. Physiol Rev 84:731–765PubMedCrossRefGoogle Scholar
  32. 32.
    Barnes PJ, Baraniuk JN, Belvisi MG (1991) Neuropeptides in the respiratory tract. Part I. Am Rev Respir Dis 144:1187–1198Google Scholar
  33. 33.
    Leys K, Morice AH, Madonna O, Sever PS (1986) Autoradiographic localisation of VIP receptors in human lung. FEBS Lett 199:198–202PubMedCrossRefGoogle Scholar
  34. 34.
    Joos G, Kips J, Pauwels R, Van der Straeten M (1986) The respiratory effects of neuropep-tides. Eur J Respir Dis Suppl 144:107–136PubMedGoogle Scholar
  35. 35.
    Rogers DF (2001) Motor control of airway goblet cells and glands. Respir Physiol 125:129–144PubMedCrossRefGoogle Scholar
  36. 36.
    Widdicombe JG (1990) The NANC system and airway vasculature. Arch Int Pharmacodyn Ther 303:83–99PubMedGoogle Scholar
  37. 37.
    Stretton D (1991) Non-adrenergic, non-cholinergic neural control of the airways. Clin Exp Pharmacol Physiol 18:675–684PubMedCrossRefGoogle Scholar
  38. 38.
    Barnes PJ (1986) Asthma as an axon reflex. Lancet 1:242–245PubMedCrossRefGoogle Scholar
  39. 39.
    Solway J, Leff AR (1991) Sensory neuropeptides and airway function. J Appl Physiol 71:2077–2087PubMedGoogle Scholar
  40. 40.
    Kirchmair R, Marksteiner J, Troger J, Mahata SK, Mahata M, Donnerer J, Amann R, Fischer-Colbrie R, Winkler H, Saria A (1994) Human and rat primary C-fibre afferents store and release secretoneurin, a novel neuropeptide. Eur J Neurosci 6:861–868PubMedCrossRefGoogle Scholar
  41. 41.
    Frossard N, Advenier C (1991) Tachykinin receptors and the airways. Life Sci 49:1941–1953PubMedCrossRefGoogle Scholar
  42. 42.
    Canning BJ (2006) Neurokinin3 receptor regulation of the airways. Vascul Pharmacol 45:227–234PubMedCrossRefGoogle Scholar
  43. 43.
    Barnes PJ (2001) Neurogenic inflammation in the airways. Respir Physiol 125:145–154PubMedCrossRefGoogle Scholar
  44. 44.
    Murai M, Maeda Y, Hagiwara D, Miyake H, Ikari N, Matsuo M, Fujii T (1993) Effects of an NK1 receptor antagonist, FK888, on constriction and plasma extravasation induced in guinea pig airway by neurokinins and capsaicin. Eur J Pharmacol 236:7–13PubMedCrossRefGoogle Scholar
  45. 45.
    Frossard N, Barnes J (1991) Effect of tachykinins in small human airways. Neuropeptides 19:157–161PubMedCrossRefGoogle Scholar
  46. 46.
    Di Maria GU, Bellofiore S, Geppetti P (1998) Regulation of airway neurogenic inflammation by neutral endopeptidase. Eur Respir J 12:1454–1462PubMedCrossRefGoogle Scholar
  47. 47.
    Palmer JB, Cuss FM, Mulderry PK, Ghatei MA, Springall DR, Cadieux A, Bloom SR, Polak JM, Barnes PJ (1987) Calcitonin gene-related peptide is localised to human airway nerves and potently constricts human airway smooth muscle. Brit J Pharmacol 91:95–101Google Scholar
  48. 48.
    Mak JC, Barnes PJ (1988) Autoradiographic localization of calcitonin gene-related peptide (CGRP) binding sites in human and guinea pig lung. Peptides 9:957–963PubMedCrossRefGoogle Scholar
  49. 49.
    Springer J, Geppetti P, Fischer A, Groneberg DA (2003) Calcitonin gene-related peptide as inflammatory mediator. Pulm Pharmacol Ther 16:121–130PubMedCrossRefGoogle Scholar
  50. 50.
    Renz H (2001) Neurotrophins in bronchial asthma. Respir Res 2:265–268PubMedCrossRefGoogle Scholar
  51. 51.
    Schinder AF, Poo M (2000) The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 23:639–645PubMedCrossRefGoogle Scholar
  52. 52.
    Levi-Montalcini R, Dal Toso R, della Valle F, Skaper SD, Leon A (1995) Update of the NGF saga. J Neurol Sci 130:119–127PubMedCrossRefGoogle Scholar
  53. 53.
    Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S, Aloe L, Levi-Montalcini R (1994) Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci USA 91:3739–3743PubMedCrossRefGoogle Scholar
  54. 54.
    Ehrhard PB, Erb P, Graumann U, Otten U (1993) Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proc Natl Acad Sci USA 90:10984–10988PubMedCrossRefGoogle Scholar
  55. 55.
    Jackson DM, Norris AA, Eady RP (1989) Nedocromil sodium and sensory nerves in the dog lung. Pulm Pharmacol 2:179–184PubMedCrossRefGoogle Scholar
  56. 56.
    Nichol GM, Alton EW, Nix A, Geddes DM, Chung KF, Barnes PJ (1990) Effect of inhaled furosemide on metabisulfite- and methacholine-induced bronchoconstriction and nasal potential difference in asthmatic subjects. Am Rev Respir Dis 142:576–580PubMedGoogle Scholar
  57. 57.
    Belvisi MG, Stretton CD, Verleden GM, Ledingham SJ, Yacoub MH, Barnes PJ (1992) Inhibition of cholinergic neurotransmission in human airways by opioids. J Appl Physiol 72:1096–10100PubMedCrossRefGoogle Scholar
  58. 58.
    Joos GF, De Swert KO, Schelfhout V, Pauwels RA (2003) The role of neural inflammation in asthma and chronic obstructive pulmonary disease. Ann NY Acad Sci 992:218–230PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alfredo Chetta
    • 1
  • Giovanna Pisi
    • 1
  • Dario Olivieri
    • 2
  1. 1.Department of Clinical Sciences, Section of Respiratory DiseasesUniversity of Parma, Padiglione RasoriParmaItaly
  2. 2.Department of Paediatrics, Cystic Fibrosis UnitUniversity of ParmaParmaItaly

Personalised recommendations