Advertisement

Biology of Neurotrophins, Neuropeptides, and Muscarinic Receptors in Asthma

  • Sanchaita Sonar
  • Harald Renz
Part of the Allergy Frontiers book series (ALLERGY, volume 2)

Abstract

Asthma is a chronic respiratory disorder involving clinical features like bronchoconstriction, mucus production and airway hyperreactivity. The mechanisms responsible for these effects are diverse and still not understood. Airway inflammation and alterations in neuronal function are thought to play a key role, which go hand in hand in mediating the full blown disease. Neurotrophins like nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and neurotrophin 4 (NT4) have been identified to be involved in neuroimmune crosstalks in allergic diseases like atopic dermatitis and asthma. The NGF overexpressing mice (CCSP-NGFtg) are hyperinnervated and show an increased AHR upon allergen challenge. Neuropeptides like substance P (SP) and tachykinins have also increasingly been reported to mediate immunological modulations in asthma. The neurotrophins and neuropeptides closely interact with each other and the outcome of disease could be a result of their mutual interaction. Asthmatic patients are known to be sensitive to a number of bronchoconstrictor agents like bradykinin, sulfur dioxide, distilled water, adenosine, and capsaicin whereas healthy individuals are not. A common feature in these exposure and stimulations is the indirect stimulation of airway nerves thereby affecting changes in lung function. The parasympathetic nervous system is the dominant neuronal pathway of airway smooth muscle tone. Stimulation of cholinergic nerves causes bronchoconstriction, mucus secretion, and bronchial vasodilatation. The following chapter describes the role of the above mentioned mediators and their direct and/or indirect involvement in neuro-immune interactions in allergic diseases, especially asthma.

Keywords

Nerve Growth Factor Atopic Dermatitis Muscarinic Receptor Airway Smooth Muscle Airway Hyperresponsiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levi-Montalcini, R., S. D. Skaper, R. Dal Toso, L. Petrelli, and A. Leon. 1996. Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci 19: 514–520.PubMedCrossRefGoogle Scholar
  2. 2.
    Lewin, G. R. and Y. A. Barde. 1996. Physiology of the neurotrophins. Annu Rev Neurosci 19: 289–317.PubMedCrossRefGoogle Scholar
  3. 3.
    Hahn, C., A. P. Islamian, H. Renz, and W. A. Nockher. 2006. Airway epithelial cells produce neurotrophins and promote the survival of eosinophils during allergic airway inflammation. J Allergy Clin Immunol 117: 787–794.PubMedCrossRefGoogle Scholar
  4. 4.
    Hamada, A., N. Watanabe, H. Ohtomo, and H. Matsuda. 1996. Nerve growth factor enhances survival and cytotoxic activity of human eosinophils. Br J Haematol 93: 299–302.PubMedCrossRefGoogle Scholar
  5. 5.
    Solomon, A., L. Aloe, J. Pe' er, J. Frucht-Pery, S. Bonini, S. Bonini, and F. Levi-Schaffer. 1998. Nerve growth factor is preformed in and activates human peripheral blood eosinophils. J Allergy Clin Immunol 102: 454–460.PubMedCrossRefGoogle Scholar
  6. 6.
    Tal, M. and R. Liberman. 1997. Local injection of nerve growth factor (NGF) triggers degranulation of mast cells in rat paw. Neurosci Lett 221: 129–132.PubMedCrossRefGoogle Scholar
  7. 7.
    Hibbert, A. P., S. J. Morris, N. G. Seidah, and R. A. Murphy. 2003. Neurotrophin-4, alone or heterodimerized with brain-derived neurotrophic factor, is sorted to the constitutive secretory pathway. J Biol Chem 278: 48129–48136.PubMedCrossRefGoogle Scholar
  8. 8.
    Mowla, S. J., H. F. Farhadi, S. Pareek, J. K. Atwal, S. J. Morris, N. G. Seidah, and R. A. Murphy. 2001. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem. 276: 12660–12666.PubMedCrossRefGoogle Scholar
  9. 9.
    Shibayama, E. and H. Koizumi. 1996. Cellular localization of the Trk neurotrophin receptor family in human non-neuronal tissues. Am J Pathol 148: 1807–1818.PubMedGoogle Scholar
  10. 10.
    Rodriguez-Tebar, A., G. Dechant, R. Gotz, and Y. A. Barde. 1992. Binding of neurotrophin-3 to its neuronal receptors and interactions with nerve growth factor and brain-derived neurotrophic factor. EMBO J 11: 917–922.PubMedGoogle Scholar
  11. 11.
    Bonini, S., A. Lambiase, S. Bonini, F. Angelucci, L. Magrini, L. Manni, and L. Aloe. 1996. Circulating nerve growth factor levels are increased in humans with allergic diseases and asthma. Proc Natl Acad Sci USA 93: 10955–10960.PubMedCrossRefGoogle Scholar
  12. 12.
    Toyoda, M., M. Nakamura, T. Makino, T. Hino, M. Kagoura, and M. Morohashi. 2002. Nerve growth factor and substance P are useful plasma markers of disease activity in atopic dermatitis. Br J Dermatol 147: 71–79.PubMedCrossRefGoogle Scholar
  13. 13.
    Namura, K., G. Hasegawa, M. Egawa, T. Matsumoto, R. Kobayashi, T. Yano, N. Katoh, S. Kishimoto, M. Ohta, H. Obayashi, H. Ose, M. Fukui, N. Nakamura, and T. Yoshikawa. 2007. Relationship of serum brain-derived neurotrophic factor level with other markers of disease severity in patients with atopic dermatitis. Clin Immunol 122: 181–186.PubMedCrossRefGoogle Scholar
  14. 14.
    Virchow, J. C., P. Julius, M. Lommatzsch, W. Luttmann, H. Renz, and A. Braun. 1998. Neurotrophins are increased in bronchoalveolar lavage fluid after segmental allergen provocation. Am J Respir Crit Care Med 158: 2002–2005.PubMedGoogle Scholar
  15. 15.
    Virchow, J. C., P. Julius, M. Lommatzsch, W. Luttmann, H. Renz, and A. Braun. 1998. Neurotrophins are increased in bronchoalveolar lavage fluid after segmental allergen provocation. Am J Respir Crit Care Med 158: 2002–2005.PubMedGoogle Scholar
  16. 16.
    Chung, Y. J., A. Farraj, N. H. Coates, S. H. Gavett, and M. D. Ward. 2007. Increased neurotrophin production in a Penicillium chrysogenum-induced allergic asthma model in mice. J Toxicol Environ Health A 70: 1020–1026.PubMedCrossRefGoogle Scholar
  17. 17.
    Fox, A. J., H. J. Patel, P. J. Barnes, and M. G. Belvisi. 2001. Release of nerve growth factor by human pulmonary epithelial cells: role in airway inflammatory diseases. Eur J Pharmacol 424: 159–162.PubMedCrossRefGoogle Scholar
  18. 18.
    Pons, F., V. Freund, H. Kuissu, E. Mathieu, C. Olgart, and N. Frossard. 2001. Nerve growth factor secretion by human lung epithelial A549 cells in pro- and anti-inflammatory conditions. Eur J Pharmacol 428: 365–369.PubMedCrossRefGoogle Scholar
  19. 19.
    Olgart, C. and N. Frossard. 2001. Human lung fibroblasts secrete nerve growth factor: effect of inflammatory cytokines and glucocorticoids. Eur Respir J 18: 115–121.PubMedCrossRefGoogle Scholar
  20. 20.
    Freund, V., F. Pons, V. Joly, E. Mathieu, N. Martinet, and N. Frossard. 2002. Upregulation of nerve growth factor expression by human airway smooth muscle cells in inflammatory conditions. Eur Respir J 20: 458–463.PubMedCrossRefGoogle Scholar
  21. 21.
    Nemoto, K., K. Fukamachi, F. Nemoto, S. Miyata, M. Hamada, Y. Nakamura, E. Senba, and T. Ueyama. 1998. Gene expression of neurotrophins and their receptors in cultured rat vascular smooth muscle cells. Biochem Biophys Res Commun 245: 284–288.PubMedCrossRefGoogle Scholar
  22. 22.
    Grewe, M., K. Vogelsang, T. Ruzicka, H. Stege, and J. Krutmann. 2000. Neurotrophin-4 production by human epidermal keratinocytes: increased expression in atopic dermatitis. J Invest Dermatol 114: 1108–1112.PubMedCrossRefGoogle Scholar
  23. 23.
    Olgart, H. C. and N. Frossard. 2002. Nerve growth factor and asthma. Pulm Pharmacol Ther 15: 51–60.CrossRefGoogle Scholar
  24. 24.
    Micera, A., E. Vigneti, D. Pickholtz, R. Reich, O. Pappo, S. Bonini, F. X. Maquart, L. Aloe, and F. Levi-Schaffer. 2001. Nerve growth factor displays stimulatory effects on human skin and lung fibroblasts, demonstrating a direct role for this factor in tissue repair. Proc Natl Acad Sci USA 98: 6162–6167.PubMedCrossRefGoogle Scholar
  25. 25.
    Kohyama, T., X. Liu, F. Q. Wen, T. Kobayashi, S. Abe, R. Ertl, and S. I. Rennard. 2002. Nerve growth factor stimulates fibronectin-induced fibroblast migration. J Lab Clin Med 140: 329–335.PubMedCrossRefGoogle Scholar
  26. 26.
    Xiang, Z. and G. Nilsson. 2000. IgE receptor-mediated release of nerve growth factor by mast cells. Clin Exp Allergy 30: 1379–1386.PubMedCrossRefGoogle Scholar
  27. 27.
    Solomon, A., L. Aloe, J. Pe'er, J. Frucht-Pery, S. Bonini, S. Bonini, and F. Levi-Schaffer. 1998. Nerve growth factor is preformed in and activates human peripheral blood eosinophils. J Allergy Clin Immunol 102: 454–460.PubMedCrossRefGoogle Scholar
  28. 28.
    Bracci-Laudiero, L., L. Aloe, R. Levi-Montalcini, M. Galeazzi, D. Schilter, J. L. Scully, and U. Otten. 1993. Increased levels of NGF in sera of systemic lupus erythematosus patients. Neuroreport 4: 563–565.PubMedCrossRefGoogle Scholar
  29. 29.
    Aloe, L. and M. A. Tuveri. 1997. Nerve growth factor and autoimmune rheumatic diseases. Clin Exp Rheumatol 15: 433–438.PubMedGoogle Scholar
  30. 30.
    Safieh-Garabedian, B., S. Poole, A. Allchorne, J. Winter, and C. J. Woolf. 1995. Contribution of interleukin-1 beta to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br. J Pharmacol 115: 1265–1275.PubMedGoogle Scholar
  31. 31.
    Braun, A., E. Appel, R. Baruch, U. Herz, V. Botchkarev, R. Paus, C. Brodie, and H. Renz. 1998. Role of nerve growth factor in a mouse model of allergic airway inflammation and asthma. Eur J Immunol 28: 3240–3251.PubMedCrossRefGoogle Scholar
  32. 32.
    Frossard, N., E. Naline, H. C. Olgart, O. Georges, and C. Advenier. 2005. Nerve growth factor is released by IL-1beta and induces hyperresponsiveness of the human isolated bronchus. Eur Respir J 26: 15–20.PubMedCrossRefGoogle Scholar
  33. 33.
    de Vries, A., F. Engels, P. A. Henricks, T. Leusink-Muis, G. P. McGregor, A. Braun, D. A. Groneberg, M. C. Dessing, F. P. Nijkamp, and A. Fischer. 2006. Airway hyper-responsiveness in allergic asthma in guinea-pigs is mediated by nerve growth factor via the induction of substance P: a potential role for trkA. Clin Exp Allergy 36: 1192–1200.PubMedCrossRefGoogle Scholar
  34. 34.
    Tokuoka, S., Y. Takahashi, T. Masuda, H. Tanaka, S. Furukawa, and H. Nagai. 2001. Disruption of antigen-induced airway inflammation and airway hyper-responsiveness in low affinity neurotrophin receptor p75 gene deficient mice. Br. J Pharmacol 134: 1580–1586.PubMedCrossRefGoogle Scholar
  35. 35.
    Hoyle, G. W., R. M. Graham, J. B. Finkelstein, K. P. Nguyen, D. Gozal, and M. Friedman. 1998. Hyperinnervation of the airways in transgenic mice overexpressing nerve growth factor. Am J Respir Cell Mol Biol 18: 149–157.PubMedGoogle Scholar
  36. 36.
    de Vries, A., C. van Rijnsoever, F. Engels, P. A. Henricks, and F. P. Nijkamp. 2001. The role of sensory nerve endings in nerve growth factor-induced airway hyperresponsiveness to histamine in guinea-pigs. Br. J Pharmacol 134: 771–776.PubMedCrossRefGoogle Scholar
  37. 37.
    Dunzendorfer, S., P. Schratzberger, N. Reinisch, C. M. Kahler, and C. J. Wiedermann. 1998. Secretoneurin, a novel neuropeptide, is a potent chemoattractant for human eosinophils. Blood 91: 1527–1532.PubMedGoogle Scholar
  38. 38.
    Severini, C., G. Improta, G. Falconieri-Erspamer, S. Salvadori, and V. Erspamer. 2002. The tachykinin peptide family. Pharmacol. Rev 54: 285–322.PubMedCrossRefGoogle Scholar
  39. 39.
    Pennefather, J. N., A. Lecci, M. L. Candenas, E. Patak, F. M. Pinto, and C. A. Maggi. 2004. Tachykinins and tachykinin receptors: a growing family. Life Sci 74: 1445–1463.PubMedCrossRefGoogle Scholar
  40. 40.
    Maggi, C. A., R. Patacchini, P. Rovero, and A. Giachetti. 1993. Tachykinin receptors and tachykinin receptor antagonists. J Auton Pharmacol 13: 23–93.PubMedCrossRefGoogle Scholar
  41. 41.
    Almeida, T. A., J. Rojo, P. M. Nieto, F. M. Pinto, M. Hernandez, J. D. Martin, and M. L. Candenas. 2004. Tachykinins and tachykinin receptors: structure and activity relationships. Curr Med Chem 11: 2045–2081.PubMedGoogle Scholar
  42. 42.
    Maggi, C. A. 2000. The troubled story of tachykinins and neurokinins. Trends Pharmacol Sci 21: 173–175.PubMedCrossRefGoogle Scholar
  43. 43.
    Di Maria, G. U., S. Bellofiore, and P. Geppetti. 1998. Regulation of airway neurogenic inflammation by neutral endopeptidase. Eur Respir J 12: 1454–1462.CrossRefGoogle Scholar
  44. 44.
    Tomaki, M., M. Ichinose, M. Miura, Y. Hirayama, H. Yamauchi, N. Nakajima, and K. Shirato. 1995. Elevated substance P content in induced sputum from patients with asthma and patients with chronic bronchitis. Am J Respir Crit Care Med 151: 613–617.PubMedGoogle Scholar
  45. 45.
    Advenier, C., G. Joos, M. Molimard, V. Lagente, and R. Pauwels. 1999. Role of tachykinins as contractile agonists of human airways in asthma. Clin Exp Allergy 29: 579–584.PubMedCrossRefGoogle Scholar
  46. 46.
    Joos, G., R. Pauwels, and S. M. van der. 1987. Effect of inhaled substance P and neurokinin A on the airways of normal and asthmatic subjects. Thorax 42: 779–783.PubMedCrossRefGoogle Scholar
  47. 47.
    Joos, G. F. 1989. The role of sensory neuropeptides in the pathogenesis of bronchial asthma. Clin Exp Allergy 19(Suppl 1): 9–13.PubMedGoogle Scholar
  48. 48.
    Cheung, D., E. H. Bel, J. Den Hartigh, J. H. Dijkman, and P. J. Sterk. 1992. The effect of an inhaled neutral endopeptidase inhibitor, thiorphan, on airway responses to neurokinin A in normal humans in vivo. Am Rev Respir Dis 145: 1275–1280.PubMedGoogle Scholar
  49. 49.
    Cheung, D., M. C. Timmers, A. H. Zwinderman, J. den Hartigh, J. H. Dijkman, and P. J. Sterk. 1993. Neutral endopeptidase activity and airway hyperresponsiveness to neurokinin A in asthmatic subjects in vivo. Am Rev Respir Dis 148: 1467–1473.PubMedGoogle Scholar
  50. 50.
    Cheung, D., H. van der Veen, J. den Hartigh, J. H. Dijkman, and P. J. Sterk. 1994. Effects of inhaled substance P on airway responsiveness to methacholine in asthmatic subjects in vivo. J Appl Physiol 77: 1325–1332.PubMedGoogle Scholar
  51. 51.
    Joos, G. F. and R. A. Pauwels. 2001. Tachykinin receptor antagonists: potential in airways diseases. Curr Opin Pharmacol 1: 235–241.PubMedCrossRefGoogle Scholar
  52. 52.
    Myers, A. C., R. G. Goldie, and D. W. Hay. 2005. A novel role for tachykinin neurokinin-3 receptors in regulation of human bronchial Ganglia neurons. Am J Respir Crit Care Med 171: 212–216.PubMedCrossRefGoogle Scholar
  53. 53.
    Sheldrick, R. L., K. F. Rabe, A. Fischer, H. Magnussen, and R. A. Coleman. 1995. Further evidence that tachykinin-induced contraction of human isolated bronchus is mediated only by NK2-receptors. Neuropeptides 29: 281–292.PubMedCrossRefGoogle Scholar
  54. 54.
    Carstairs, J. R. 1987. Distribution of calcitonin gene-related peptide receptors in the lung. Eur J Pharmacol 140: 357–358.PubMedCrossRefGoogle Scholar
  55. 55.
    Palmer, J. B., F. M. Cuss, P. K. Mulderry, M. A. Ghatei, D. R. Springall, A. Cadieux, S. R. Bloom, J. M. Polak, and P. J. Barnes. 1987. Calcitonin gene-related peptide is localised to human airway nerves and potently constricts human airway smooth muscle. Br J Pharmacol 91: 95–101.PubMedGoogle Scholar
  56. 56.
    Nieber, K., C. R. Baumgarten, R. Rathsack, J. Furkert, P. Oehme, and G. Kunkel. 1992. Substance P and beta-endorphin-like immunoreactivity in lavage fluids of subjects with and without allergic asthma. J Allergy Clin Immunol 90: 646–652.PubMedCrossRefGoogle Scholar
  57. 57.
    Heaney, L. G., L. J. Cross, L. P. McGarvey, K. D. Buchanan, M. Ennis, and C. Shaw. 1998. Neurokinin A is the predominant tachykinin in human bronchoalveolar lavage fluid in normal and asthmatic subjects. Thorax 53: 357–362.PubMedCrossRefGoogle Scholar
  58. 58.
    Piotrowski, W., M. A. Devoy, C. C. Jordan, and J. C. Foreman. 1984. The substance P receptor on rat mast cells and in human skin. Agents Actions 14: 420–424.PubMedCrossRefGoogle Scholar
  59. 59.
    Devillier, P., D. Regoli, A. Asseraf, B. Descours, J. Marsac, and M. Renoux. 1986. Histamine release and local responses of rat and human skin to substance P and other mammalian tachykinins. Pharmacology 32: 340–347.PubMedCrossRefGoogle Scholar
  60. 60.
    Forsythe, P., L. P. McGarvey, L. G. Heaney, J. MacMahon, and M. Ennis. 2000. Sensory neuropeptides induce histamine release from bronchoalveolar lavage cells in both nonasthmatic coughers and cough variant asthmatics. Clin Exp Allergy 30: 225–232.PubMedCrossRefGoogle Scholar
  61. 61.
    Germonpre, P. R., G. R. Bullock, B. N. Lambrecht, D. V. Van, V, W. H. Luyten, G. F. Joos, and R. A. Pauwels. 1999. Presence of substance P and neurokinin 1 receptors in human sputum macrophages and U-937 cells. Eur Respir J 14: 776–782.PubMedCrossRefGoogle Scholar
  62. 62.
    Chancellor-Freeland, C., G. F. Zhu, R. Kage, D. I. Beller, S. E. Leeman, and P. H. Black. 1995. Substance P and stress-induced changes in macrophages. Ann NY Acad Sci 771: 472–484.PubMedCrossRefGoogle Scholar
  63. 63.
    Hartung, H. P. 1988. Activation of macrophages by neuropeptides. Brain Behav Immun 2: 275–281.PubMedCrossRefGoogle Scholar
  64. 64.
    Lotz, M., J. H. Vaughan, and D. A. Carson. 1988. Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science 241: 1218–1221.PubMedCrossRefGoogle Scholar
  65. 65.
    Brunelleschi, S., S. Guidotto, I. Viano, R. Fantozzi, E. Pozzi, P. Ghio, and C. Albera. 1996. Tachykinin activation of human alveolar macrophages in tobacco smoke and sarcoidosis: a phenotypical and functional study. Neuropeptides 30: 456–464.PubMedCrossRefGoogle Scholar
  66. 66.
    Iwamoto, I., N. Nakagawa, H. Yamazaki, A. Kimura, H. Tomioka, and S. Yoshida. 1993. Mechanism for substance P-induced activation of human neutrophils and eosinophils. Regul Pept 46: 228–230.PubMedCrossRefGoogle Scholar
  67. 67.
    El Shazly, A. E., K. Masuyama, Y. Samejima, M. Eura, and T. Ishikawa. 1996. Inhibition of human eosinophil chemotaxis in vitro by the anti-allergic agent emedastine difumarate. Immunopharmacol Immunotoxicol 18: 587–595.CrossRefGoogle Scholar
  68. 68.
    Numao, T. and D. K. Agrawal. 1992. Neuropeptides modulate human eosinophil chemotaxis. J Immunol 149: 3309–3315.PubMedGoogle Scholar
  69. 69.
    Tanabe, T., H. Otani, X. T. Zeng, K. Mishima, R. Ogawa, and C. Inagaki. 1996. Inhibitory effects of calcitonin gene-related peptide on substance-P-induced superoxide production in human neutrophils. Eur J Pharmacol 314: 175–183.PubMedCrossRefGoogle Scholar
  70. 70.
    Tanabe, T., H. Otani, X. T. Zeng, K. Mishima, R. Ogawa, and C. Inagaki. 1996. Inhibitory effects of calcitonin gene-related peptide on substance-P-induced superoxide production in human neutrophils. Eur J Pharmacol 314: 175–183.PubMedCrossRefGoogle Scholar
  71. 71.
    Wozniak, A., W. H. Betts, G. A. Murphy, and M. Rokicinski. 1993. Interleukin-8 primes human neutrophils for enhanced superoxide anion production. Immunology 79: 608–615.PubMedGoogle Scholar
  72. 72.
    Wiedermann, C. J., F. J. Wiedermann, A. Apperl, G. Kieselbach, G. Konwalinka, and H. Braunsteiner. 1989. In vitro human polymorphonuclear leukocyte chemokinesis and human monocyte chemotaxis are different activities of aminoterminal and carboxyterminal substance P. Naunyn Schmiedebergs Arch Pharmacol 340: 185–190.PubMedCrossRefGoogle Scholar
  73. 73.
    Iwamoto, I., N. Nakagawa, H. Yamazaki, A. Kimura, H. Tomioka, and S. Yoshida. 1993. Mechanism for substance P-induced activation of human neutrophils and eosinophils. Regul Pept 46: 228–230.PubMedCrossRefGoogle Scholar
  74. 74.
    Zimmerman, B. J., D. C. Anderson, and D. N. Granger. 1992. Neuropeptides promote neutrophil adherence to endothelial cell monolayers. Am J Physiol 263: G678–G682.PubMedGoogle Scholar
  75. 75.
    Cook, G. A., D. Elliott, A. Metwali, A. M. Blum, M. Sandor, R. Lynch, and J. V. Weinstock. 1994. Molecular evidence that granuloma T lymphocytes in murine schistosomiasis mansoni express an authentic substance P (NK-1) receptor. J Immunol 152: 1830–1835.PubMedGoogle Scholar
  76. 76.
    Payan, D. G., D. R. Brewster, A. Missirian-Bastian, and E. J. Goetzl. 1984. Substance P recognition by a subset of human T lymphocytes. J Clin Invest 74: 1532–1539.PubMedCrossRefGoogle Scholar
  77. 77.
    Calvo, C. F., G. Chavanel, and A. Senik. 1992. Substance P enhances IL-2 expression in activated human T cells. J Immunol 148: 3498–3504.PubMedGoogle Scholar
  78. 78.
    Carucci, J. A., D. L. Auci, C. A. Herrick, and H. G. Durkin. 1995. Neuropeptide-mediated regulation of hapten-specific IgE responses in mice. I. Substance P-mediated isotype- specific suppression of BPO-specific IgE antibody-forming cell responses induced in vivo and in vitro. J Leukoc Biol 57: 110–115.Google Scholar
  79. 79.
    Eglezos, A., P. V. Andrews, R. L. Boyd, and R. D. Helme. 1991. Tachykinin-mediated modulation of the primary antibody response in rats: evidence for mediation by an NK-2 receptor. J Neuroimmunol 32: 11–18.PubMedCrossRefGoogle Scholar
  80. 80.
    Pascual, D. W., J. R. McGhee, H. Kiyono, and K. L. Bost. 1991. Neuroimmune modulation of lymphocyte function — I. Substance P enhances immunoglobulin synthesis in lipopolysaccharide activated murine splenic B cell cultures. Int Immunol 3: 1223–1229.PubMedCrossRefGoogle Scholar
  81. 81.
    Fox, F. E., M. Kubin, M. Cassin, Z. Niu, J. Hosoi, H. Torii, R. D. Granstein, G. Trinchieri, and A. H. Rook. 1997. Calcitonin gene-related peptide inhibits proliferation and antigen presentation by human peripheral blood mononuclear cells: effects on B7, interleukin 10, and interleukin 12. J Invest Dermatol 108: 43–48.CrossRefGoogle Scholar
  82. 82.
    Kawamura, N., H. Tamura, S. Obana, M. Wenner, T. Ishikawa, A. Nakata, and H. Yamamoto. 1998. Differential effects of neuropeptides on cytokine production by mouse helper T cell subsets. Neuroimmunomodulation 5: 9–15.PubMedCrossRefGoogle Scholar
  83. 83.
    Hsiue, T. R., A. Garland, D. W. Ray, M. B. Hershenson, A. R. Leff, and J. Solway. 1992. Endogenous sensory neuropeptide release enhances nonspecific airway responsiveness in guinea pigs. Am Rev Respir Dis 146: 148–153.PubMedGoogle Scholar
  84. 84.
    Ladenius, A. R., G. Folkerts, H. J. van der Linde, and F. P. Nijkamp. 1995. Potentiation by viral respiratory infection of ovalbumin-induced guinea-pig tracheal hyperresponsiveness: role for tachykinins. Br J Pharmacol 115: 1048–1052.PubMedGoogle Scholar
  85. 85.
    Boichot, E., V. Lagente, M. Paubert-Braquet, and N. Frossard. 1993. Inhaled substance P induces activation of alveolar macrophages and increases airway responses in the guinea-pig. Neuropeptides 25: 307–313.PubMedCrossRefGoogle Scholar
  86. 86.
    Matsuse, T., R. J. Thomson, X. R. Chen, H. Salari, and R. R. Schellenberg. 1991. Capsaicin inhibits airway hyperresponsiveness but not lipoxygenase activity or eosinophilia after repeated aerosolized antigen in guinea pigs. Am Rev Respir Dis 144: 368–372.PubMedGoogle Scholar
  87. 87.
    Tanaka, D. T. and M. M. Grunstein. 1984. Mechanisms of substance P-induced contraction of rabbit airway smooth muscle. J Appl Physiol 57: 1551–1557.PubMedGoogle Scholar
  88. 88.
    Finney, M. J., J. A. Karlsson, and C. G. Persson. 1985. Effects of bronchoconstrictors and bronchodilators on a novel human small airway preparation. Br J Pharmacol 85: 29–36.PubMedGoogle Scholar
  89. 89.
    Advenier, C., G. Joos, M. Molimard, V. Lagente, and R. Pauwels. 1999. Role of tachykinins as contractile agonists of human airways in asthma. Clin Exp Allergy 29: 579–584.PubMedCrossRefGoogle Scholar
  90. 90.
    Martling, C. R., E. Theodorsson-Norheim, and J. M. Lundberg. 1987. Occurrence and effects of multiple tachykinins; substance P, neurokinin A and neuropeptide K in human lower airways. Life Sci 40: 1633–1643.PubMedCrossRefGoogle Scholar
  91. 91.
    Advenier, C., E. Naline, G. Drapeau, and D. Regoli. 1987. Relative potencies of neurokinins in guinea pig trachea and human bronchus. Eur J Pharmacol 139: 133–137.PubMedCrossRefGoogle Scholar
  92. 92.
    Kraneveld, A. D., F. P. Nijkamp, and A. J. Van Oosterhout. 1997. Role for neurokinin-2 receptor in interleukin-5-induced airway hyperresponsiveness but not eosinophilia in guinea pigs. Am J Respir Crit Care Med 156: 367–374.PubMedGoogle Scholar
  93. 93.
    Ladenius, A. R. and F. P. Nijkamp. 1993. Capsaicin pretreatment of guinea pigs in vivo prevents ovalbumin-induced tracheal hyperreactivity in vitro. Eur J Pharmacol 235: 127–131.PubMedCrossRefGoogle Scholar
  94. 94.
    Matsuse, T., R. J. Thomson, X. R. Chen, H. Salari, and R. R. Schellenberg. 1991. Capsaicin inhibits airway hyperresponsiveness but not lipoxygenase activity or eosinophilia after repeated aerosolized antigen in guinea pigs. Am Rev Respir Dis 144: 368–372.PubMedGoogle Scholar
  95. 95.
    Ladenius, A. R., G. Folkerts, H. J. van der Linde, and F. P. Nijkamp. 1995. Potentiation by viral respiratory infection of ovalbumin-induced guinea-pig tracheal hyperresponsiveness: role for tachykinins. Br J Pharmacol 115: 1048–1052.PubMedGoogle Scholar
  96. 96.
    Mak, J. C. and P. J. Barnes. 1990. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung. Am Rev Respir Dis 141: 1559–1568.PubMedGoogle Scholar
  97. 97.
    Fryer, A. D. and J. Maclagan. 1984. Muscarinic inhibitory receptors in pulmonary parasympathetic nerves in the guinea-pig. Br J Pharmacol 83: 973–978.PubMedGoogle Scholar
  98. 98.
    Colebatch, H. J. and D. F. Halmagyi. 1963. Effect of vagotomy and vagal stimulation on lung mechanics and circulation. J Appl Physiol 18: 881–887.PubMedGoogle Scholar
  99. 99.
    Horvath, I., K. Argay, I. Herjavecz, and M. Kollai. 1995. Relation between bronchial and cardiac vagal tone in healthy humans. Chest 108: 701–705.PubMedCrossRefGoogle Scholar
  100. 100.
    Kesler, B. S. and B. J. Canning. 1999. Regulation of baseline cholinergic tone in guinea-pig airway smooth muscle. J Physiol 518 (Pt 3): 843–855.PubMedCrossRefGoogle Scholar
  101. 101.
    Brody, J. S., G. Klempfner, M. M. Staum, D. Vidyasagar, D. E. Kuhl, and J. A. Waldhausen. 1972. Mucociliary clearance after lung denervation and bronchial transection. J Appl Physiol 32: 160–164.PubMedGoogle Scholar
  102. 102.
    Gallagher, J. T., P. W. Kent, M. Passatore, R. J. Phipps, and P. S. Richardson. 1975. The composition of tracheal mucus and the nervous control of its secretion in the cat. Proc Roy Soc Lond B Biol Sci 192: 49–76.CrossRefGoogle Scholar
  103. 103.
    Phipps, R. J. and P. S. Richardson. 1976. Proceedings: The effects of some airway irritant reflexes upon mucus secretion from the trachea. J Physiol 254: 58P–59P.PubMedGoogle Scholar
  104. 104.
    Barnes, P. J., J. A. Nadel, J. M. Roberts, and C. B. Basbaum. 1982. Muscarinic receptors in lung and trachea: autoradiographic localization using [3H] quinuclidinyl benzilate. Eur J Pharmacol 86: 103–106.PubMedCrossRefGoogle Scholar
  105. 105.
    Mak, J. C. and P. J. Barnes. 1990. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung. Am Rev Respir Dis 141: 1559–1568.PubMedGoogle Scholar
  106. 106.
    Van Koppen, C. J., J. W. Lammers, J. F. Rodrigues de Miranda, A. J. Beld, C. L. van Herwaarden, and C. A. van Ginneken. 1989. Muscarinic receptor binding in central airway musculature in chronic airflow obstruction. Pulm Pharmacol 2: 131–136.PubMedCrossRefGoogle Scholar
  107. 107.
    Haddad, E. B., J. C. Mak, A. Hislop, S. G. Haworth, and P. J. Barnes. 1994. Characterization of muscarinic receptor subtypes in pig airways: radioligand binding and northern blotting studies. Am J Physiol 266: L642–L648.PubMedGoogle Scholar
  108. 108.
    Roffel, A. F., C. R. Elzinga, R. G. Van Amsterdam, R. A. De Zeeuw, and J. Zaagsma. 1988. Muscarinic M2 receptors in bovine tracheal smooth muscle: discrepancies between binding and function. Eur J Pharmacol 153: 73–82.PubMedCrossRefGoogle Scholar
  109. 109.
    Mullol, J., J. N. Baraniuk, C. Logun, M. Merida, J. Hausfeld, J. H. Shelhamer, and M. A. Kaliner. 1992. M1 and M3 muscarinic antagonists inhibit human nasal glandular secretion in vitro. J Appl Physiol 73: 2069–2073.PubMedGoogle Scholar
  110. 110.
    Okayama, M., J. Mullol, J. N. Baraniuk, J. N. Hausfeld, B. Feldman, M. Merida, J. H. Shelhamer, and M. A. Kaliner. 1993. Muscarinic receptor subtypes in human nasal mucosa: characterization, autoradiographic localization, and function in vitro. Am J Respir Cell Mol Biol 8: 176–187.PubMedGoogle Scholar
  111. 111.
    Ramnarine, S. I., E. B. Haddad, A. M. Khawaja, J. C. Mak, and D. F. Rogers. 1996. On muscarinic control of neurogenic mucus secretion in ferret trachea. J Physiol 494 (Pt 2): 577–586.PubMedGoogle Scholar
  112. 112.
    Fisher, J. T., S. G. Vincent, J. Gomeza, M. Yamada, and J. Wess. 2004. Loss of vagally mediated bradycardia and bronchoconstriction in mice lacking M2 or M3 muscarinic acetylcholine receptors. FASEB J 18: 711–713.PubMedGoogle Scholar
  113. 113.
    Wessler, I. K. and C. J. Kirkpatrick. 2001. The Non-neuronal cholinergic system: an emerging drug target in the airways. Pulm Pharmacol Ther 14: 423–434.PubMedCrossRefGoogle Scholar
  114. 114.
    Barnes, P. J. 1990. Muscarinic receptors in airways: recent developments. J Appl Physiol 68: 1777–1785.PubMedCrossRefGoogle Scholar
  115. 115.
    Eglen, R. M., S. S. Hegde, and N. Watson. 1996. Muscarinic receptor subtypes and smooth muscle function. Pharmacol Rev 48: 531–565.PubMedGoogle Scholar
  116. 116.
    Budd, D. C., G. B. Willars, J. E. McDonald, and A. B. Tobin. 2001. Phosphorylation of the Gq/11-coupled m3-muscarinic receptor is involved in receptor activation of the ERK-1/2 mitogen-activated protein kinase pathway. J Biol Chem 276: 4581–4587.PubMedCrossRefGoogle Scholar
  117. 117.
    Roffel, A. F., J. H. Davids, C. R. Elzinga, D. Wolf, J. Zaagsma, and H. Kilbinger. 1997. Characterization of the muscarinic receptor subtype(s) mediating contraction of the guinea-pig lung strip and inhibition of acetylcholine release in the guinea-pig trachea with the selective muscarinic receptor antagonist tripitramine. Br J Pharmacol 122: 133–141.PubMedCrossRefGoogle Scholar
  118. 118.
    Meurs, H., A. F. Roffel, J. B. Postema, A. Timmermans, C. R. Elzinga, H. F. Kauffman, and J. Zaagsma. 1988. Evidence for a direct relationship between phosphoinositide metabolism and airway smooth muscle contraction induced by muscarinic agonists. Eur J Pharmacol 156: 271–274.PubMedCrossRefGoogle Scholar
  119. 119.
    Rogers, D. F. 2001. Motor control of airway goblet cells and glands. Respir Physiol 125: 129–144.PubMedCrossRefGoogle Scholar
  120. 120.
    Klapproth, H., K. Racke, and I. Wessler. 1998. Acetylcholine and nicotine stimulate the release of granulocyte-macrophage colony stimulating factor from cultured human bronchial epithelial cells. Naunyn Schmiedebergs Arch Pharmacol 357: 472–475.PubMedCrossRefGoogle Scholar
  121. 121.
    Gosens, R., J. Zaagsma, H. Meurs, and A. J. Halayko. 2006. Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respir Res 7:73.PubMedCrossRefGoogle Scholar
  122. 122.
    Mori, A., O. Kaminuma, M. Suko, S. Inoue, T. Ohmura, A. Hoshino, Y. Asakura, K. Miyazawa, T. Yokota, Y. Okumura, K. Ito, and H. Okudaira. 1997. Two distinct pathways of interleukin-5 synthesis in allergen-specific human T-cell clones are suppressed by glucocorticoids. Blood 89: 2891–2900.PubMedGoogle Scholar
  123. 123.
    Wang, C. Y., A. G. Bassuk, L. H. Boise, C. B. Thompson, R. Bravo, and J. M. Leiden. 1994. Activation of the granulocyte-macrophage colony-stimulating factor promoter in T cells requires cooperative binding of Elf-1 and AP-1 transcription factors. Mol Cell Biol 14: 1153–1159.PubMedGoogle Scholar
  124. 124.
    De Groot, R. P., T. B. van Dijk, E. Caldenhoven, P. J. Coffer, J. A. Raaijmakers, J. W. Lammers, and L. Koenderman. 1997. Activation of 12-O-tetradecanoylphorbol-13-acetate response element- and dyad symmetry element-dependent transcription by interleukin-5 is mediated by Jun N-terminal kinase/stress-activated protein kinase kinases. J Biol Chem 272: 2319–2325.PubMedCrossRefGoogle Scholar
  125. 125.
    Rajotte, D., H. B. Sadowski, A. Haman, K. Gopalbhai, S. Meloche, L. Liu, G. Krystal, and T. Hoang. 1996. Contribution of both STAT and SRF/TCF to c-fos promoter activation by granulocyte-macrophage colony-stimulating factor. Blood 88: 2906–2916.PubMedGoogle Scholar
  126. 126.
    Profita, M., R. D. Giorgi, A. Sala, A. Bonanno, L. Riccobono, F. Mirabella, M. Gjomarkaj, G. Bonsignore, J. Bousquet, and A. M. Vignola. 2005. Muscarinic receptors, leukotriene B4 production and neutrophilic inflammation in COPD patients. Allergy 60: 1361–1369.PubMedCrossRefGoogle Scholar
  127. 127.
    Fryer, A. D. and M. Wills-Karp. 1991. Dysfunction of M2-muscarinic receptors in pulmonary parasympathetic nerves after antigen challenge. J Appl Physiol 71: 2255–2261.PubMedGoogle Scholar
  128. 128.
    Cheung, D., E. C. Dick, M. C. Timmers, E. P. de Klerk, W. J. Spaan, and P. J. Sterk. 1995. Rhinovirus inhalation causes long-lasting excessive airway narrowing in response to methacholine in asthmatic subjects in vivo. Am J Respir Crit Care Med 152: 1490–1496.PubMedGoogle Scholar
  129. 129.
    Aquilina, A. T., W. J. Hall, R. G. Douglas, Jr., and M. J. Utell. 1980. Airway reactivity in subjects with viral upper respiratory tract infections: the effects of exercise and cold air. Am Rev Respir Dis 122: 3–10.PubMedGoogle Scholar
  130. 130.
    Empey, D. W., L. A. Laitinen, L. Jacobs, W. M. Gold, and J. A. Nadel. 1976. Mechanisms of bronchial hyperreactivity in normal subjects after upper respiratory tract infection. Am Rev Respir Dis 113: 131–139.PubMedGoogle Scholar
  131. 131.
    Costello, R. W., C. M. Evans, B. L. Yost, K. E. Belmonte, G. J. Gleich, D. B. Jacoby, and A. D. Fryer. 1999. Antigen-induced hyperreactivity to histamine: role of the vagus nerves and eosinophils. Am J Physiol 276: L709–L714.PubMedGoogle Scholar
  132. 132.
    Gold, W. M., G. F. Kessler, and D. Y. Yu. 1972. Role of vagus nerves in experimental asthma in allergic dogs. J Appl Physiol 33: 719–725.PubMedGoogle Scholar
  133. 133.
    Karczewski, W. and J. G. Widdicombe. 1969. The role of the vagus nerves in the respiratory and circulatory reactions to anaphylaxis in rabbits. J Physiol 201: 293–304.PubMedGoogle Scholar
  134. 134.
    Zimmermann, I., M. S. Islam, K. Lanser, and W. T. Ulmer. 1976. Antigen-induced airway obstruction and the influence of vagus blockade. Respiration 33: 95–103.PubMedGoogle Scholar
  135. 135.
    Elbon, C. L., D. B. Jacoby, and A. D. Fryer. 1995. Pretreatment with an antibody to interleukin-5 prevents loss of pulmonary M2 muscarinic receptor function in antigen-challenged guinea pigs. Am J Respir Cell Mol Biol 12: 320–328.PubMedGoogle Scholar
  136. 136.
    Fryer, A. D., R. W. Costello, B. L. Yost, R. R. Lobb, T. F. Tedder, D. A. Steeber, and B. S. Bochner. 1997. Antibody to VLA-4, but not to L-selectin, protects neuronal M2 muscarinic receptors in antigen-challenged guinea pig airways. J Clin Invest 99: 2036–2044.PubMedCrossRefGoogle Scholar
  137. 137.
    Sawatzky, D. A., P. J. Kingham, E. Court, B. Kumaravel, A. D. Fryer, D. B. Jacoby, W. G. McLean, and R. W. Costello. 2002. Eosinophil adhesion to cholinergic nerves via ICAM-1 and VCAM-1 and associated eosinophil degranulation. Am J Physiol Lung Cell Mol Physiol 282: L1279–L1288.PubMedGoogle Scholar
  138. 138.
    Evans, C. M., D. B. Jacoby, and A. D. Fryer. 2001. Effects of dexamethasone on antigen-induced airway eosinophilia and M(2) receptor dysfunction. Am J Respir Crit Care Med 163: 1484–1492.PubMedGoogle Scholar
  139. 139.
    Costello, R. W., B. H. Schofield, G. M. Kephart, G. J. Gleich, D. B. Jacoby, and A. D. Fryer. 1997. Localization of eosinophils to airway nerves and effect on neuronal M2 muscarinic receptor function. Am J Physiol 273: L93–103.PubMedGoogle Scholar
  140. 140.
    Hu, J., S. Z. Wang, C. Forray, and E. E. el Fakahany. 1992. Complex allosteric modulation of cardiac muscarinic receptors by protamine: potential model for putative endogenous ligands. Mol Pharmacol 42: 311–321.PubMedGoogle Scholar
  141. 141.
    Jacoby, D. B., G. J. Gleich, and A. D. Fryer. 1993. Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor. J Clin Invest 91: 1314–1318.PubMedCrossRefGoogle Scholar
  142. 142.
    Evans, C. M., A. D. Fryer, D. B. Jacoby, G. J. Gleich, and R. W. Costello. 1997. Pretreatment with antibody to eosinophil major basic protein prevents hyperresponsiveness by protecting neuronal M2 muscarinic receptors in antigen-challenged guinea pigs. J Clin Invest 100: 2254–2262.PubMedCrossRefGoogle Scholar
  143. 143.
    Fryer, A. D. and D. B. Jacoby. 1992. Function of pulmonary M2 muscarinic receptors in antigen-challenged guinea pigs is restored by heparin and poly-L-glutamate. J Clin Invest 90: 2292–2298.PubMedCrossRefGoogle Scholar
  144. 144.
    Watson, J. J., M. S. Fahey, W. E. van den, F. Engels, F. P. Nijkamp, P. Stroemer, S. McMahon, S. J. Allen, and D. Dawbarn. 2006. TrkAd5: A novel therapeutic agent for treatment of inflammatory pain and asthma. J Pharmacol Exp Ther 316: 1122–1129.PubMedCrossRefGoogle Scholar
  145. 145.
    Bertrand, C., P. Geppetti, P. D. Graf, A. Foresi, and J. A. Nadel. 1993. Involvement of neurogenic inflammation in antigen-induced bronchoconstriction in guinea pigs. Am J Physiol 265: L507–L511.PubMedGoogle Scholar
  146. 146.
    Bertrand, C., P. Geppetti, J. Baker, I. Yamawaki, and J. A. Nadel. 1993. Role of neurogenic inflammation in antigen-induced vascular extravasation in guinea pig trachea. J Immunol 150: 1479–1485.PubMedGoogle Scholar
  147. 147.
    Kudlacz, E. M., R. W. Knippenberg, D. E. Logan, and T. P. Burkholder. 1996. Effect of MDL 105, 212, a nonpeptide NK-1/NK-2 receptor antagonist in an allergic guinea pig model. J Pharmacol Exp Ther 279: 732–739.PubMedGoogle Scholar
  148. 148.
    Van Schoor, J., G. F. Joos, B. L. Chasson, R. J. Brouard, and R. A. Pauwels. 1998. The effect of the NK2 tachykinin receptor antagonist SR 48968 (saredutant) on neurokinin A-induced bronchoconstriction in asthmatics. Eur Respir J 12: 17–23.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sanchaita Sonar
    • 1
  • Harald Renz
    • 2
  1. 1.Department of Clinical Chemistry and Molecular DiagnosticsPhilipps-University of MarburgGermany
  2. 2.Department of Clinical Chemistry and Molecular DiagnosticsUniversitätsklinikum Giessen und Marburg GmbHBaldingerstrGermany

Personalised recommendations