Neuroanatomy of the Airways

  • John Widdicombe
Part of the Allergy Frontiers book series (ALLERGY, volume 2)


Both the nose and the lower airways are innervated by the parasysmpathetic and sympathetic systems: the former has both sensory and motor functions, but the latter only motor. In the nose, parasympathetic afferent nerves can cause reflex apnoea, sneeze and sniff, and strong changes in the autonomic nervous system in relation to the cardiovascular system, the larynx and the lungs. Parasympathetic and sympathetic motor nerves to the nose cause vascular and secretory effects. In the lower airways many neural sensors have been described: slowly and rapidly adapting stretch receptors, C-fibre receptors, various ‘cough receptors’ and neuroepithelial bodies. Parasympathetic (vagal) pathways conduct many reflexes from these peripheral sensors: cough of different patterns, apnoeas, gasps and cardiovascular, bronchomotor and laryngomotor changes. These reflexes have been shown to exhibit ‘plasticity’ in various physiological and pathological conditions. The motor supply to the lungs is parasympathetic and sympathetic, with a number of different subdivisions based mainly on the mediators released. These affect airway smooth muscle, bronchial and pulmonary vascular beds and airway secretory tissues. For both the nose and the lower airways the afferent and efferent neural supplies interact in highly complex central nervous system ‘centres’ which are, thankfully, beyond the scope of this review.


Airway Smooth Muscle Allergy Clin Immunol Vasoactive Intestinal Polypeptide Neurogenic Inflammation Nodose Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baroody PM (1999) Anatomy and physiology. In: Naclerio RM, Durham SR, Mygind N (eds) Rhinitis: mechanisms and management. Marcel Dekker, New York, pp. 1–23Google Scholar
  2. 2.
    Springall DR, Polak JM (1995) Neuroanatomy of the airways. In: Busse WW, Holgate ST (eds) Asthma and rhinitis. Blackwell, Oxford, pp. 625–634Google Scholar
  3. 3.
    Baraniuk JN, Kaliner MA (1995) Functional anatomy of upper-airway nerves. In: Busse WW, Holgate ST (eds) Asthma and rhinitis. Blackwell, Oxford, pp. 652–666Google Scholar
  4. 4.
    Eccles R (1982) Neurological and pharmacological considerations. In: Proctor DF, Andersen IB (eds) The nose: upper airway physiology and the atmospheric environment. Elsevier, Amsterdam, pp. 191–214Google Scholar
  5. 5.
    Sarin S, Undem B, Sanico A, Togias A (2006) The role of the nervous system in rhinitis. J Allergy Clin Immunol 118:999–1016PubMedCrossRefGoogle Scholar
  6. 6.
    Barnes PJ (1995) Airway neuropeptides. In: Busse WW, Holgate ST (eds) Asthma and rhinitis. Blackwell, Oxford, pp. 667–685Google Scholar
  7. 7.
    Barnes PJ, Baraniuk JN, Belvisi MG (1991) Neuropeptides in the respiratory tract. Part 1. Am Rev Resp Dis 144:1187–1198Google Scholar
  8. 8.
    Barnes PJ, Baraniuk JN, Belvisi MG (1991) Neuropeptides in the respiratory tract. Part 2. Am Rev Resp Dis 144:1391–1399Google Scholar
  9. 9.
    Lundberg JM, Lundblad L, Martling, CR, Saria A, Stjarne P, Angaard JM (1987) Coexistence of multiple peptides and classical transmitters in airway neurons: functional and pathophysi-ological aspects. Am Rev Resp Dis 136:S16–S23PubMedGoogle Scholar
  10. 10.
    Taylor-Clark TE, Kollarik M, MacGlashan DW, Undem BJ (2005) Nasal sensory nerve populations responding to histamine and capsaicin. J Allergy Clin Immunol 116:1282–1288PubMedCrossRefGoogle Scholar
  11. 11.
    Seki N, Shirasaki H, Kikuchi M, Sakamoto T, Watanabe N, Himi T (2006) Expression and localization of TRPV1 in human nasal mucosa. Rhinology 44:128–134PubMedGoogle Scholar
  12. 12.
    Glebovsky VD, Bayev AV (1984) Stimulation of nasal cavity mucosal trigeminal receptors with respiratory airflows (Russian text). Schenov Physiol J 70:1534–1541Google Scholar
  13. 13.
    Baraniuk JN, Kim D (2007) Nasonasal reflexes, the nasal cycle, and sneeze. Curr Allergy Asthma Rep 7:105–111PubMedCrossRefGoogle Scholar
  14. 14.
    Widdicombe JG (1988) Nasal and pharyngeal reflexes: protective and respiratory functions. In: Mathew OP, Sant'Ambrogio G (eds) Respiratory function of the upper airway. Marcel Dekker, New York, pp. 233–258Google Scholar
  15. 15.
    Sheahan P, Walsh RM, Walsh MA, Costello RW (2005) Induction of nasal hyper-responsiveness by allergen challenge in rhinitis: the role of afferent and efferent nerves. Clin Exp Allergy 35:45–51PubMedCrossRefGoogle Scholar
  16. 16.
    Fischer A, Wussow A, Cryer A, Schmeck B, Noga O, Zweng M, Peiser CW, Groneberg DA (2005) Neuronal plasticity in persistent perennial allergic rhinitis. J Occup Environ Med 47:20–25PubMedGoogle Scholar
  17. 17.
    Groneberg DA, Heppt W, Welker PO, Peiser C, Dinh QT, Cryer A, Zweng M, Fischer A (2003) Aspirin-sensitive rhinitis-associated changes in upper airway innervation. Eur Resp J 22:986–991CrossRefGoogle Scholar
  18. 18.
    Wilfong ER, Dey RD (2004) Nerve growth factor and substance P regulation in nasal sensory toluene diisocyanate exposure. Am J Resp Clin Care Mol Biol 30:793–800CrossRefGoogle Scholar
  19. 19.
    van Megan YJB, Klassen ABM, Rodrigues de Miranda JF, van Ginneken CAM, Wentges BTR (1991) Alterations in adrenoceptors in the nasal mucosa of allergic patients in comparison with nonallergic individuals. J Allergy Clin Immunol 87:530–540CrossRefGoogle Scholar
  20. 20.
    Barnes PJ (1989) Muscarinic receptor subtypes: implications for lung disease. Thorax 44:161–167PubMedCrossRefGoogle Scholar
  21. 21.
    Knipping S, Holzhausen HJ, Berghaus A, Bloching M, Riederer A (2005) Ultrastructural detection of nitric oxide in human nasal mucosa. Otolaryngol Head Neck Surg 132:620–625PubMedCrossRefGoogle Scholar
  22. 22.
    Richerson HB, Seebohm PN (1968) Nasal airway response to exercise. J Allergy 41:268–284CrossRefGoogle Scholar
  23. 23.
    Baraniuk JN, Castellino S, Goff J (1990) Neuropeptide Y (NPY) in human nasal mucosa. Am J Resp Cell Mol Biol 3:165–173Google Scholar
  24. 24.
    Hill P, Goulding D, Webber SE, Widdicombe JG (1989) Blood sinuses in the submucosa of large airways of the sheep. J Anat 162:235–247PubMedGoogle Scholar
  25. 25.
    Corfield DR, Hanafi Z, Widdicombe JG (1991) Changes in tracheal mucosal thickness and blood flow in sheep. J Appl Physiol 71:1282–1288PubMedGoogle Scholar
  26. 26.
    Laitinen LA, Robinson NP, Laitinen A, Widdicombe JG (1986) Relationship between tracheal mucosal thickness and vascular resistance in dogs. J Appl Physiol 61:2186–2194PubMedGoogle Scholar
  27. 27.
    Schelegle ES (2003) Functional morphology and physiology of slowly adapting pulmonary stretch receptors. Anat Rec 270A:11–16CrossRefGoogle Scholar
  28. 28.
    Schelegle E, Green JF (2001) An overview of the anatomy and physiology of slowly adapting pulmonary stretch receptors. Resp Physiol 125:17–32CrossRefGoogle Scholar
  29. 29.
    Krauhs JM (1984) Morphology of presumptive slowly adapting receptors in the dog trachea. Anat Res 210:73–85CrossRefGoogle Scholar
  30. 30.
    Yu J (2005) Airway mechanoreceptors. Resp Physiol Neurobiol 148:217–143CrossRefGoogle Scholar
  31. 31.
    Miserocchi G, Sant'Ambrogio G (1974) Responses of pulmonary stretch receptors to static pressure inflations. Resp Physiol 21:77–85CrossRefGoogle Scholar
  32. 32.
    Kollerik M, Undem BJ (2006) Sensory transduction in cough-associated nerves. Resp Physiol Neurobiol 152:243–254CrossRefGoogle Scholar
  33. 33.
    Carr MJ, Undem BJ (2001) Ion channels in airway afferent neurons. Resp Physiol Neurobiol 125:83–98Google Scholar
  34. 34.
    Sant'Ambrogio G, Widdicombe J (2001) Reflexes from airway rapidly adapting receptors. Resp Physiol Neurobiol 125:33–46Google Scholar
  35. 35.
    Widdicombe J (2003) Functional morphology and physiology of pulmonary rapidly adapting stretch receptors. Anat Rec 270A:2–10CrossRefGoogle Scholar
  36. 36.
    Canning BJ, Mori N, Mazzone SB (2006) Vagal afferent nerves regulating the cough reflex. Resp Physiol Neurobiol 152:223–242CrossRefGoogle Scholar
  37. 37.
    Lee L-Y, Pisarri TE (2001) Afferent properties and reflex functions of bronchopulmonary C-fibers. Resp Physiol Neurobiol 125:47–66Google Scholar
  38. 38.
    Lee L-Y, Lin YS, Gu Q, Chung E, Ho C-Y (2003) Functional morphology and physiological properties of bronchopulmonary C-fiber afferents. Anat Rec A Discov Mol Cell Evol Biol 270:17–24PubMedCrossRefGoogle Scholar
  39. 39.
    Paintal AS (1955) Impulses from vagal afferent fibres from specific pulmonary deflation receptors. The response of these receptors to phenyl diguanide, potato starch, 5-hydroxytryp-tamine and nicotine, and their role in respiratory and cardiovascular reflexes. Q J Exp Physiol 40:89–111Google Scholar
  40. 40.
    Coleridge HM, Coleridge JCG (1986) Reflexes evoked from tracheobronchial tree and lungs. In: Cherniak NS, Widicombe JG (eds) Handbook of physiology, Section 3; The respiratory system. In: Control of breathing, part 1 vol II. American Physiological society, Washington, DC, pp. 450–460Google Scholar
  41. 41.
    Hunter DD, Undem BJ (1999) Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea. Am Rev Resp Crit Care Med 159:1943–1948Google Scholar
  42. 42.
    Barnes PJ (2001) Neurogenic inflammation in the airways. Resp Physiol Neurobiol 125:145–154Google Scholar
  43. 43.
    Carr MJ (2004) Plasticity of vagal afferent fibres mediating cough. Pulm Pharmacol Ther 17:447–452PubMedCrossRefGoogle Scholar
  44. 44.
    Adriaensen D, Brouns I, Genechten J V, Timmermans J-P (2003) Functional morphology of pulmonary neuroepithelial bodies: extremely complex airway receptors. Anat Rec A Discov Mol Cell Evol Biol 270:25–40PubMedCrossRefGoogle Scholar
  45. 45.
    Canning BJ, Fischer A (2001) Neural regulation of airway smooth muscle tone. Resp Physiol 125:113–128CrossRefGoogle Scholar
  46. 46.
    Widdicombe JG (1963) Regulation of tracheobronchial smooth muscle. Phys Rev 43:1–37Google Scholar
  47. 47.
    Rogers DF (2001) Motor control of airway goblet cells and glands. Resp Physiol 125:129–144CrossRefGoogle Scholar
  48. 48.
    Fung DCK, Rogers DF (1997) Airway submucosal glands: physiology and pharmacology. In: Rogers DF, Lethem MI (eds) Airway mucus: basic mechanisms and clinical perspectives. Birkhauser Verlag, Basel, pp. 179–210Google Scholar
  49. 49.
    Widdicombe JG, Webber SE (1992) Neuroregulation and pharmacology of the tracheobron-chial circulation. In: Butler J (ed) The bronchial circulation. Marcel Dekker, New York, pp. 249–290Google Scholar
  50. 50.
    Widdicombe JG (1990) Comparison between the vascular beds of the upper and lower airways. Eur Resp J 3:564s–571sGoogle Scholar
  51. 51.
    Godden DJ (1990) Reflex and nervous control of the bronchial circulation. Eur J Physiol 3:602s–607sGoogle Scholar
  52. 52.
    Magno M (1990) Comparative anatomy of the tracheobronchial circulation. Eur Resp J 3:557s–563sGoogle Scholar
  53. 53.
    Fishman AP (1985) Pulmonary circulation. In: Fishman AP, Fisher AB (eds) The respiratory system, Section 3 Handbook of physiology, vol I Circulation and nonrespiratory functions. American Physiological Society, Bethesda, MD, pp. 93–166Google Scholar
  54. 54.
    Cogolludo A, Moreno L, Villamor E (2007) Mechanisms controlling vascular tone in pulmonary arterial hypertension: implications for vasodilator therapy. Pharmacology 79:65–75PubMedCrossRefGoogle Scholar
  55. 55.
    Weir EK, Olschewski A (2006) Role of ion channels in acute and chronic responses of the pulmonary vasculature in hypoxia. Cardiovasc Res 72:630–641CrossRefGoogle Scholar
  56. 56.
    Mauban JR, Remillard CV (2005) Hypoxic pulmonary vasoconstriction: role of ion channels. J Appl Physiol 98:412–423Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • John Widdicombe
    • 1
  1. 1.University of LondonLondonUK

Personalised recommendations