Hemopoietic Mechanisms in Allergic Rhinitis and Asthma

  • Gail M. Gauvreau
  • Roma Sehmi
Part of the Allergy Frontiers book series (ALLERGY, volume 2)

There is mounting evidence that atopic diseases such as allergic rhinitis and atopic asthma are driven by local tissue inflammatory responses, as well as having a systemic component. An important systemic mechanism to consider is the activation of hemopoietic processes within the bone marrow (Fig. 1). In response to signals generated from the upper airway after exposure to sensitizing allergens, progenitor cells are directed to the mucosa of the respiratory tract. Once in the airways, hemopoietic cells contribute to both the acute inflammatory response and the tissue remodeling changes related to chronic allergic airway diseases

Hemopoietic progenitor cell (HPC) differentiation and maturation in adults has traditionally been thought to be restricted to the microenvironment of the bone marrow. However, a novel view has emerged in recent years according to which at least some HPC present in tissue may be recruited from the bone marrow, trafficking through the peripheral circulation, and into mucosal tissues, becoming part of a regenerative and/or inflammatory process at “distal” tissue sites [1]. The trafficking of HPC suggests a form of cell plasticity whereby primitive cells have the potential not only to give rise to mature blood cells while resident within the bone marrow, but can themselves egress from the bone marrow and home to specific organs under the orchestrated control of specific chemokines and cytokines. Once within the tissue, the fate of these HPC is determined by locally elaborated growth factors that permit a process termed “in-situ hemopoiesis” [2–5]. We provide herein an overview of the role of systemic and in-situ hemopoiesis, as part of the already complex scenario of allergic inflammation within the upper and lower airways, and highlight the benefit of controlling this component of the inflammatory process for optimal treatment of allergic airway diseases


Allergic Rhinitis Allergy Clin Immunol Respir Crit Allergen Challenge Allergic Inflammation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 105:829–841.PubMedCrossRefGoogle Scholar
  2. 2.
    Denburg JA, Keith PK (2004) Systemic aspects of chronic rhinosinusitis. Immunol Allergy Clin North Am 24:87–102.PubMedCrossRefGoogle Scholar
  3. 3.
    Sehmi R, Baatjes AJ, Denburg JA (2003) Hemopoietic progenitor cells and hemopoietic factors: potential targets for treatment of allergic inflammatory diseases. Curr Drug Targets Inflamm Allergy 2:271–278.PubMedCrossRefGoogle Scholar
  4. 4.
    Gauvreau GM, Denburg AE (2005) Hemopoietic progenitors: the role of eosinophil/basophil progenitors in allergic airway inflammation. Expert Rev Clin Immunol 1: 87–101.CrossRefGoogle Scholar
  5. 5.
    Denburg JA, Dolovich J, Ohtoshi T, Cox G, Gauldie J, Jordana M (1990) The microenviron-mental differentiation hypothesis of airway inflammation. Am J Rhinol 4: 29–32.CrossRefGoogle Scholar
  6. 6.
    Denburg JA, Richardson M, Telizyn S, Bienenstock J (1983) Basophil/mast cell precursors in human peripheral blood. Blood 61:775–780.PubMedGoogle Scholar
  7. 7.
    Watt SM, Visser JW (1992) Recent advances in the growth and isolation of primitive human haemopoietic progenitor cells. Cell Prolif 25:263–297.PubMedCrossRefGoogle Scholar
  8. 8.
    Denburg JA, Telizyn S, Messner H, Lim B, Jamal N, Ackerman SJ, Gleich GJ, Bienenstock J (1985) Heterogeneity of human peripheral blood eosinophil-type colonies: evidence for a common basophil-eosinophil progenitor. Blood 66:312–318.PubMedGoogle Scholar
  9. 9.
    Denburg JA (1990) Cytokine-induced human basophil/mast cell growth and differentiation in vitro. Springer Semin Immunopathol 12:401–414.PubMedCrossRefGoogle Scholar
  10. 10.
    Denburg JA (1992) Basophil and mast cell lineages in vitro and in vivo. Blood 79:846–860.PubMedGoogle Scholar
  11. 11.
    Clutterbuck EJ, Hirst EM, Sanderson CJ (1989) Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF. Blood 73:1504–1512.PubMedGoogle Scholar
  12. 12.
    Sanderson CJ, Warren DJ, Strath M (1985) Identification of a lymphokine that stimulates eosinophil differentiation in vitro. Its relationship to interleukin 3, and functional properties of eosinophils produced in cultures. J Exp Med 162:60–74.Google Scholar
  13. 13.
    Sehmi R, Denburg JA. Differentiation of human eosinophils (2000) Role in allergic inflammation. Chem Immunol 76:29–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I (1996) The ISHAGE guidelines for CD34 + cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother 5:213–226.Google Scholar
  15. 15.
    Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 133:157–165.Google Scholar
  16. 16.
    Sutherland DR, Keating A (1992) The CD34 antigen: structure, biology, and potential clinical applications. J Hematother 1:115–129.PubMedGoogle Scholar
  17. 17.
    Sutherland DR, Stewart AK, Keating A (1993) CD34 antigen: molecular features and potential clinical applications. Stem Cells 11(Suppl 3):50–57.PubMedCrossRefGoogle Scholar
  18. 18.
    Sehmi R, Howie K, Sutherland DR, Schragge W, O'Byrne PM, Denburg JA (1996) Increased levels of CD34 + hemopoietic progenitor cells in atopic subjects. Am J Respir Cell Mol Biol 15:645–655.PubMedGoogle Scholar
  19. 19.
    Sehmi R, Wood LJ, Watson R, Foley R, Hamid Q, O'byrne PM, Denburg JA (1997) Allergen-induced increases in IL-5 receptor alpha-subunit expression on bone marrow-derived CD34 + cells from asthmatic subjects. A novel marker of progenitor cell commitment towards eosi-nophilic differentiation. J Clin Invest 100:2466–2475.PubMedCrossRefGoogle Scholar
  20. 20.
    Adachi T, Choudhury BK, Stafford S, Sur S, Alam R (2000) The differential role of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase in eosinophil functions. J Immunol 165:2198–2204.PubMedGoogle Scholar
  21. 21.
    Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale DC, Srour EF (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201:1307–1318.PubMedCrossRefGoogle Scholar
  22. 22.
    Lanza F, Healy L, Sutherland DR (2001) Structural and functional features of the CD34 antigen: an update. J Biol Regul Homeost Agents 15:1–13.PubMedGoogle Scholar
  23. 23.
    Gangenahalli GU, Singh VK, Verma YK, Gupta P, Sharma RK, Chandra R, Luthra PM (2006) Hematopoietic stem cell antigen CD34: role in adhesion or homing. Stem Cells Dev 15:305–313.PubMedCrossRefGoogle Scholar
  24. 24.
    Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic recon-stitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245.PubMedCrossRefGoogle Scholar
  25. 25.
    Nakauchi H (1998) Hematopoietic stem cells: are they CD34-positive or CD34-negative? Nat Med 4:1009–1010.PubMedCrossRefGoogle Scholar
  26. 26.
    Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 4:1038–1045.PubMedCrossRefGoogle Scholar
  27. 27.
    Ogawa M (2002) Changing phenotypes of hematopoietic stem cells. Exp Hematol 30:3–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Sato T, Laver JH, Ogawa M (1999) Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94:2548–2554.PubMedGoogle Scholar
  29. 29.
    Baumhueter S, Dybdal N, Kyle C, Lasky LA (1994) Global vascular expression of murine CD34, a sialomucin-like endothelial ligand for L-selectin. Blood 84:2554–2565.PubMedGoogle Scholar
  30. 30.
    Tamamura H, Fujisawa M, Hiramatsu K, Mizumoto M, Nakashima H, Yamamoto N, Otaka A, Fujii N (2004) Identification of a CXCR4 antagonist, a T140 analog, as an anti-rheumatoid arthritis agent. FEBS Lett 569:99–104.PubMedCrossRefGoogle Scholar
  31. 31.
    Majdic O, Stockl J, Pickl WF, Bohuslav J, Strobl H, Scheinecker C, Stockinger H, Knapp W (1994) Signaling and induction of enhanced cytoadhesiveness via the hematopoietic progenitor cell surface molecule CD34. Blood 83:1226–1234.PubMedGoogle Scholar
  32. 32.
    Carion A, Domenech J, Herault O, Benboubker L, Clement N, Bernard MC, Desbois I, Colombat P, Binet C (2002) Decreased stroma adhesion capacity of CD34 + progenitor cells from mobilized peripheral blood is not lineage- or stage-specific and is associated with low beta 1 and beta 2 integrin expression. J Hematother Stem Cell Res 11:491–500.PubMedCrossRefGoogle Scholar
  33. 33.
    Sergejeva S, Johansson AK, Malmhall C, Lotvall J (2004) Allergen exposure-induced differences in CD34 + cell phenotype: relationship to eosinophilopoietic responses in different compartments. Blood 103:1270–1277.PubMedCrossRefGoogle Scholar
  34. 34.
    Iwasaki H, Mizuno S, Mayfield R, Shigematsu H, Arinobu Y, Seed B, Gurish MF, Takatsu K, Akashi K (2005) Identification of eosinophil lineage-committed progenitors in the murine bone marrow. J Exp Med 201:1891–1897.CrossRefGoogle Scholar
  35. 35.
    Rosenbauer F, Tenen DG (2007) Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 7:105–117.PubMedCrossRefGoogle Scholar
  36. 36.
    Hirai H, Zhang P, Dayaram T, Hetherington CJ, Mizuno S, Imanishi J, Akashi K, Tenen DG (2006) C/EBPbeta is required for ‘emergency’ granulopoiesis. Nat Immunol 7:732–739.PubMedCrossRefGoogle Scholar
  37. 37.
    Rottem M, Hull G, Metcalfe DD (1994) Demonstration of differential effects of cytokines on mast cells derived from murine bone marrow and peripheral blood mononuclear cells. Exp Hematol 22:1147–1155.PubMedGoogle Scholar
  38. 38.
    Figueroa DJ, Breyer RM, Defoe SK, Kargman S, Daugherty BL, Waldburger K, Liu Q, Clements M, Zeng Z, O'Neill GP, Jones TR, Lynch KR, Austin CP, Evans JF (2001) Expression of the cysteinyl leukotriene 1 receptor in normal human lung and peripheral blood leukocytes. Am J Respir Crit Care Med 163:226–233.PubMedGoogle Scholar
  39. 39.
    O'Farrel AM, Kinoshita T, Miyajima A (1996) The hematopoietic cytokine receptors. In: Whetton AD, Gordon J, eds. Blood cell biochemistry: hematopoietic cell growth factors and their receptors. New York: Plenum Press, pp 1–40.Google Scholar
  40. 40.
    Mayani H, Alvarado-Moreno JA, Flores-Guzman P (2003) Biology of human hematopoietic stem and progenitor cells present in circulation. Arch Med Res 34:476–488.PubMedCrossRefGoogle Scholar
  41. 41.
    Denburg JA, Woolley M, Leber B, Linden M, O'Byrne P (1994) Basophil and eosinophil differentiation in allergic reactions. J Allergy Clin Immunol 94:1135–1141.PubMedCrossRefGoogle Scholar
  42. 42.
    Morrison SJ, Shah NM, Anderson DJ (1997) Regulatory mechanisms in stem cell biology. Cell 88:287–298.PubMedCrossRefGoogle Scholar
  43. 43.
    Metcalf D (1991) Lineage commitment of hemopoietic progenitor cells in developing blast cell colonies: influence of colony-stimulating factors. Proc Natl Acad Sci USA 88:11310–11314.PubMedCrossRefGoogle Scholar
  44. 44.
    Broxmeyer HE, Kim CH, Cooper SH, Hangoc G, Hromas R, Pelus LM (1999) Effects of CC, CXC, C, and CX3C chemokines on proliferation of myeloid progenitor cells, and insights into SDF-1-induced chemotaxis of progenitors. Ann N Y Acad Sci 872:142–162.PubMedCrossRefGoogle Scholar
  45. 45.
    Rothenberg ME, MacLean JA, Pearlman E, Luster AD, Leder P (1997) Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J Exp Med 185:785–790.PubMedCrossRefGoogle Scholar
  46. 46.
    Duhrsen U, Knieling G, Beecken W, Neumann S, Hossfeld DK (1995) Chimaeric cultures of human marrow stroma and murine leukaemia cells: evidence for abnormalities in the haemo-poietic microenvironment in myeloid malignancies and other infiltrating marrow disorders. Br J Haematol 90:502–511.PubMedCrossRefGoogle Scholar
  47. 47.
    Denburg JA (1995) Microenvironmental influences on inflammatory cell differentiation. Allergy 50:25–28.PubMedCrossRefGoogle Scholar
  48. 48.
    Drazen JM, Austen KF, Lewis RA, Clark DA, Goto G, Marfat A, Corey EJ (1980) Comparative airway and vascular activities of leukotrienes C-1 and D in vivo and in vitro. Proc Natl Acad Sci USA 77:4354–4358.PubMedCrossRefGoogle Scholar
  49. 49.
    Mossalayi MD, Arock M, Bertho JM, Blanc C, Dalloul AH, Hofstetter H, Sarfati M, Delespesse G, Debre P (1990) Proliferation of early human myeloid precursors induced by interleukin-1 and recombinant soluble CD23. Blood 75:1924–1927.PubMedGoogle Scholar
  50. 50.
    Gauvreau GM, Watson RM, O'Byrne PM (1999) Kinetics of allergen-induced airway eosinophilic cytokine production and airway inflammation. Am J Respir Crit Care Med 160:640–647.PubMedGoogle Scholar
  51. 51.
    Denburg JA, Telizyn S, Belda A, Dolovich J, Bienenstock J (1985) Increased numbers of circulating basophil progenitors in atopic patients. J Allergy Clin Immunol 76:466–472.PubMedCrossRefGoogle Scholar
  52. 52.
    Wood LJ, Inman MD, Watson RM, Foley R, Denburg JA, O'Byrne PM (1998) Changes in bone marrow inflammatory cell progenitors after inhaled allergen in asthmatic subjects. Am J Respir Crit Care Med 157:99–105.PubMedGoogle Scholar
  53. 53.
    Linden M, Svensson C, Andersson M, Greiff L, Andersson E, Denburg JA, Persson CG (1999) Circulating eosinophil/basophil progenitors and nasal mucosal cytokines in seasonal allergic rhinitis. Allergy 54:212–219.PubMedCrossRefGoogle Scholar
  54. 54.
    Cyr MM, Baatjes AJ, Hayes LM, Crawford L, Denburg JA (2002) The effect of desloratod-ine on eosinophil/basophil progenitors and-other inflammatory markers in seasonal allergic rhinitis: a placebo-controlled randomized study. J Allergy Clin Immunol 109:S117 Ref Type: Abstract.CrossRefGoogle Scholar
  55. 55.
    Metcalf D (1983) Clonal analysis of the response of HL60 human myeloid leukemia cells to biological regulators. Leuk Res 7:117–132.PubMedCrossRefGoogle Scholar
  56. 56.
    Ohnishi M, Ruhno J, Bienenstock J, Milner R, Dolovich J, Denburg JA (1988) Human nasal polyp epithelial basophil/mast cell and eosinophil colony-stimulating activity. The effect is T-cell-dependent. Am Rev Respir Dis 138:560–564.Google Scholar
  57. 57.
    Ohnishi M, Ruhno J, Dolovich J, Denburg JA (1988) Allergic rhinitis nasal mucosal conditioned medium stimulates growth and differentiation of basophil/mast cell and eosinophil progenitors from atopic blood. J Allergy Clin Immunol 81:1149–1154.PubMedCrossRefGoogle Scholar
  58. 58.
    Cox G, Ohtoshi T, Vancheri C, Denburg JA, Dolovich J, Gauldie J, Jordana M (1996) Promotion of eosinophil survival by human bronchial epithelial cells and its modulation by steroids. Am J Respir Cell Mol Biol 4:525–531.Google Scholar
  59. 59.
    Vancheri C, Gauldie J, Bienenstock J, Cox G, Scicchitano R, Stanisz A, Jordana M (1989) Human lung fibroblast-derived granulocyte-macrophage colony stimulating factor (GM-CSF) mediates eosinophil survival in vitro. Am J Respir Cell Mol Biol 1:289–295.PubMedGoogle Scholar
  60. 60.
    Vancheri C, Ohtoshi T, Cox G, Xaubet A, Abrams JS, Gauldie J, Dolovich J, Denburg J, Jordana M (1991) Neutrophilic differentiation induced by human upper airway fibroblast-derived granulocyte/macrophage colony-stimulating factor (GM-CSF). Am J Respir Cell Mol Biol 4:11–17.PubMedGoogle Scholar
  61. 61.
    Kim YK, Uno M, Hamilos DL, Beck L, Bochner B, Schleimer R, Denburg JA (1999) Immunolocalization of CD34 in nasal polyposis. Effect of topical corticosteroids. Am J Respir Cell Mol Biol 20:388–397.Google Scholar
  62. 62.
    Gauvreau GM, O'Byrne PM, Moqbel R, Velazquez J, Watson RM, Howie KJ, Denburg JA (1998) Enhanced expression of GM-CSF in differentiating eosinophils of atopic and atopic asthmatic subjects. Am J Respir Cell Mol Biol 19:55–62.PubMedGoogle Scholar
  63. 63.
    Gauvreau GM, Wood LJ, Sehmi R, Watson RM, Dorman SC, Schleimer RP, Denburg JA, O'Byrne PM (2000). The effects of inhaled budesonide on circulating eosinophil progenitors and their expression of cytokines after allergen challenge in subjects with atopic asthma. Am J Respir Crit Care Med 162:2139–144.PubMedGoogle Scholar
  64. 64.
    Sehmi R, Howie K, Rerecich T, Watson RM, Foley R, O'Byrne PM, Denburg JA (2000) Increased numbers of eosinophil progenitor cells (CD34 + IL-5Ra + ) in the bone marrow of atopic asthmatic subjects. J Allergy Clin Immunol 105:S172.CrossRefGoogle Scholar
  65. 65.
    Wood LJ, Sehmi R, Gauvreau GM, Watson RM, Foley R, Denburg JA, O'Byrne PM (1999) An inhaled corticosteroid, budesonide, reduces baseline but not allergen-induced increases in bone marrow inflammatory cell progenitors in asthmatic subjects. Am J Respir Crit Care Med 159:1457–1463.PubMedGoogle Scholar
  66. 66.
    Ohkawara Y, Lei XF, Stampfli MR, Marshall JS, Xing Z, Jordana M (1997) Cytokine and eosi-nophil responses in the lung, peripheral blood, and bone marrow compartments in a murine model of allergen-induced airways inflammation. Am J Respir Cell Mol Biol 16:510–520.PubMedGoogle Scholar
  67. 67.
    Gaspar Elsas MI, Joseph D, Elsas PX, Vargaftig BB (1997) Rapid increase in bone-marrow eosinophil production and responses to eosinopoietic interleukins triggered by intranasal allergen challenge. Am J Respir Cell Mol Biol 17:404–413.PubMedGoogle Scholar
  68. 68.
    Inman MD, Ellis R, Wattie J, Denburg JA, O'Byrne PM (1999) Allergen-induced increase in airway responsiveness, airway eosinophilia, and bone-marrow eosinophil progenitors in mice. Am J Respir Cell Mol Biol 21:473–479.PubMedGoogle Scholar
  69. 69.
    Saito H, Howie K, Wattie J, Denburg A, Ellis R, Inman MD, Denburg JA (2001) Allergen-induced murine upper airway inflammation: local and systemic changes in murine experimental allergic rhinitis. Immunology 104:226–234.PubMedCrossRefGoogle Scholar
  70. 70.
    Li J, Saito H, Crawford L, Inman MD, Cyr MM, Denburg JA (2005) Haemopoietic mechanisms in murine allergic upper and lower airway inflammation. Immunology 114:386–396.PubMedCrossRefGoogle Scholar
  71. 71.
    Wilson AM, Duong M, Crawford L, Denburg J (2005) An evaluation of peripheral blood eosinophil/basophil progenitors following nasal allergen challenge in patients with allergic rhinitis. Clin Exp Allergy 35:39–44.PubMedCrossRefGoogle Scholar
  72. 72.
    Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chem-okines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30:973–981.PubMedCrossRefGoogle Scholar
  73. 73.
    Southam DS, Widmer N, Ellis R, Hirota JA, Inman MD, Sehmi R (2005) Increased eosinophil-lineage committed progenitors in the lung of allergen-challenged mice. J Allergy Clin Immunol 115:95–102.PubMedCrossRefGoogle Scholar
  74. 74.
    Robinson DS, Damia R, Zeibecoglou K, Molet S, North J, Yamada T, Kay AB, Hamid Q (1999) CD34( + )/interleukin-5Ralpha messenger RNA + cells in the bronchial mucosa in asthma: potential airway eosinophil progenitors. Am J Respir Cell Mol Biol 20:9–13.PubMedGoogle Scholar
  75. 75.
    Cameron L, Christodoulopoulos P, Lavigne F, Nakamura Y, Eidelman D, McEuen A, Walls A, Tavernier J, Minshall E, Moqbel R, Hamid Q (2000) Evidence for local eosinophil differentiation within allergic nasal mucosa: inhibition with soluble IL-5 receptor. J Immunol 164:1538–1545.PubMedGoogle Scholar
  76. 76.
    Wood LJ, Inman MD, Denburg JA, O'Byrne PM (1998) Allergen challenge increases cell traffic between bone marrow and lung. Am J Respir Cell Mol Biol 18:759–767.PubMedGoogle Scholar
  77. 77.
    Sitkauskiene B, Johansson AK, Sergejeva S, Lundin S, Sjostrand M, Lotvall J (2004) Regulation of bone marrow and airway CD34 + eosinophils by interleukin-5. Am J Respir Cell Mol Biol 30:367–378.PubMedCrossRefGoogle Scholar
  78. 78.
    Radinger M, Johansson AK, Sitkauskiene B, Sjostrand M, Lotvall J (2004) Eotaxin-2 regulates newly produced and CD34 airway eosinophils after allergen exposure. J Allergy Clin Immunol 113:1109–1116.PubMedCrossRefGoogle Scholar
  79. 79.
    Hart TK, Cook RM, Zia-Amirhosseini P, Minthorn E, Sellers TS, Maleeff BE, Eustis S, Schwartz LW, Tsui P, Appelbaum ER, Martin EC, Bugelski PJ, Herzyk DJ (2001) Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys. J Allergy Clin Immunol 108:250–257.PubMedCrossRefGoogle Scholar
  80. 80.
    Wood LJ, Sehmi R, Dorman S, Hamid Q, Tulic MK, Watson RM, Foley R, Wasi P, Denburg JA, Gauvreau G, O'Byrne PM (2002) Allergen-induced increases in bone marrow T lymphocytes and interleukin-5 expression in subjects with asthma. Am J Respir Crit Care Med 166:883–889.PubMedCrossRefGoogle Scholar
  81. 81.
    Dorman SC, Sehmi R, Gauvreau GM, Watson RM, Foley R, Jones GL, Denburg JA, Inman MD, O'Byrne PM (2004). Kinetics of bone marrow eosinophilopoiesis and associated cytokines after allergen inhalation. Am J Respir Crit Care Med 169:565–572.PubMedCrossRefGoogle Scholar
  82. 82.
    Sitkauskiene B, Radinger M, Bossios A, Johansson AK, Sakalauskas R, Lotvall J (2005) Airway allergen exposure stimulates bone marrow eosinophilia partly via IL-9. Respir Res 6:33.PubMedCrossRefGoogle Scholar
  83. 83.
    Saito H, Matsumoto K, Denburg AE, Crawford L, Ellis R, Inman MD, Sehmi R, Takatsu K, Matthaei KI, Denburg JA (2002) Pathogenesis of murine experimental allergic rhinitis: a study of local and systemic consequences of IL-5 deficiency. J Immunol 168:3017–3023.PubMedGoogle Scholar
  84. 84.
    Egan RW, Athwahl D, Chou CC, Chapman RW, Emtage S, Jenh CH, Kung TT, Mauser PJ, Murgolo NJ, Bodmer MW (1997) Pulmonary biology of anti-interleukin 5 antibodies. Mem Inst Oswaldo Cruz 92(Suppl 2):69–73.Google Scholar
  85. 85.
    Matthaei KI, Foster P, Young IG (1997) The role of interleukin-5 (IL-5) in vivo: studies with IL-5 deficient mice. Mem Inst Oswaldo Cruz 92(Suppl 2):63–68.Google Scholar
  86. 86.
    Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ, Ovington KS, Behm CA, Kohler G, Young IG, Matthaei KI (1996) IL-5-deficient mice have a developmental defect in CD5 + B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4:15–24.PubMedCrossRefGoogle Scholar
  87. 87.
    Sehmi R, Dorman S, Baatjes A, Watson R, Foley R, Ying S, Robinson DS, Kay AB, O'byrne PM, Denburg JA (2003). Allergen-induced fluctuation in CC chemokine receptor 3 expression on bone marrow CD34 + cells from asthmatic subjects: significance for mobilization of haemopoietic progenitor cells in allergic inflammation. Immunology 109:536–546.PubMedCrossRefGoogle Scholar
  88. 88.
    Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, Zhang J, Ratajczak J, Ratajczak MZ (2004) CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35:233–245.PubMedCrossRefGoogle Scholar
  89. 89.
    Sergejeva S, Malmhall C, Lotvall J, Pullerits T (2005) Increased number of CD34cells in nasal mucosa of allergic rhinitis patients: inhibition by a local corticosteroid. Clin Exp Allergy 35:34–38.PubMedCrossRefGoogle Scholar
  90. 90.
    Bousquet J, Clark TJ, Hurd S, Khaltaev N, Lenfant C, O'Byrne P, Sheffer A (2007) GINA guidelines on asthma and beyond. Allergy 62:102–112.PubMedGoogle Scholar
  91. 91.
    Hargreave FE, Dolovich J, Newhouse MT (1990) The assessment and treatment of asthma: a conference report. J Allergy Clin Immunol 85:1098–1111.PubMedCrossRefGoogle Scholar
  92. 92.
    Barnes PJ, Pedersen S, Busse WW (1998) Efficacy and safety of inhaled corticosteroids. New developments. Am J Respir Crit Care Med 157:S1–53.Google Scholar
  93. 93.
    Gibson PG, Wong BJ, Hepperle MJ, Kline PA, Girgis-Gabardo A, Guyatt G, Dolovich J, Denburg JA, Ramsdale EH, Hargreave FE (1992) A research method to induce and examine a mild exacerbation of asthma by withdrawal of inhaled corticosteroid. Clin Exp Allergy 22:525–532.PubMedCrossRefGoogle Scholar
  94. 94.
    Barr RD, Volaric Z, Koekebakker M (1987) Stimulation of human eosinophilopoiesis by hydrocortisone in vitro. Acta Haematol 77:20–24.PubMedCrossRefGoogle Scholar
  95. 95.
    Dorman SC, O'Byrne PM, Wood L, Watson RM, Wasi P, Foley R, Denburg JA (2000) Glucocorticoid enhancement of IL-5-induced bone marrow eosinophil progenitor colony formation, in vitro. J Allergy Clin Immunol 105:s74.CrossRefGoogle Scholar
  96. 96.
    Baatjes AJ, Sehmi R, Saito H, Cyr MM, Dorman SC, Inman MD, O'Byrne PM, Denburg JA (2002). Anti-allergic therapies: effects on eosinophil progenitors. Pharmacol Ther 95:63–72.PubMedCrossRefGoogle Scholar
  97. 97.
    Gaspar Elsas MI, Maximiano ES, Joseph D, Alves L, Topilko A, Vargaftig BB, Xavier EP (2000) Upregulation by glucocorticoids of responses to eosinopoietic cytokines in bone-marrow from normal and allergic mice. Br J Pharmacol 129:1543–1552.CrossRefGoogle Scholar
  98. 98.
    Holgate ST, Bradding P, Sampson AP (1996) Leukotriene antagonists and synthesis inhibitors: new directions in asthma therapy. J Allergy Clin Immunol 98:1–13.PubMedCrossRefGoogle Scholar
  99. 99.
    Lee E, Robertson T, Smith J, Kilfeather S (2000) Leukotriene receptor antagonists and synthesis inhibitors reverse survival in eosinophils of asthmatic individuals. Am J Respir Crit Care Med 161:1881–1886.PubMedGoogle Scholar
  100. 100.
    Barnes NC, Piper PJ, Costello JF (1984) Comparative effects of inhaled leukotriene C4, leukotriene D4, and histamine in normal human subjects. Thorax 39:500–504.PubMedCrossRefGoogle Scholar
  101. 101.
    Marom Z, Shelhamer JH, Bach MK, Morton DR, Kaliner M (1982) Slow-reacting substances, leukotrienes C4 and D4, increase the release of mucus from human airways in vitro. Am Rev Respir Dis 126:449–451.PubMedGoogle Scholar
  102. 102.
    Munoz NM, Douglas I, Mayer D, Herrnreiter A, Zhu X, Leff AR (1997) Eosinophil chemo-taxis inhibited by 5-lipoxygenase blockade and leukotriene receptor antagonism. Am J Respir Crit Care Med 155:1398–1403.PubMedGoogle Scholar
  103. 103.
    Bautz F, Denzlinger C, Kanz L, Mohle R (2001) Chemotaxis and transendothelial migration of CD34( + ) hematopoietic progenitor cells induced by the inflammatory mediator leukot-riene D4 are mediated by the 7-transmembrane receptor CysLT1. Blood 97:3433–3440.PubMedCrossRefGoogle Scholar
  104. 104.
    Claesson HE, Dahlberg N, Gahrton G (1985) Stimulation of human myelopoiesis by leuko-triene B4. Biochem Biophys Res Commun 131:579–585.PubMedCrossRefGoogle Scholar
  105. 105.
    Miller AM, Weiner RS, Ziboh VA (1986) Evidence for the role of leukotrienes C4 and D4 as essential intermediates in CSF-stimulated human myeloid colony formation. Exp Hematol 14:760–765.PubMedGoogle Scholar
  106. 106.
    Stenke L, Mansour M, Reizenstein P, Lindgren JA (1993) Stimulation of human myelo-poiesis by leukotrienes B4 and C4: interactions with granulocyte-macrophage colony-stimulating factor. Blood 81:352–356.PubMedGoogle Scholar
  107. 107.
    Estrov Z, Halperin DS, Coceani F, Freedman MH (1988) Modulation of human marrow haematopoiesis by leucotrienes in vitro. Br J Haematol 69:321–327.PubMedCrossRefGoogle Scholar
  108. 108.
    Braccioni F, Dorman SC, O'Byrne PM, Inman MD, Denburg JA, Parameswaran K, Baatjes AJ, Foley R, Gauvreau GM (2002) The effect of cysteinyl leukotrienes on growth of eosinophil progenitors from peripheral blood and bone marrow of atopic subjects. J Allergy Clin Immunol 110:96–101.PubMedCrossRefGoogle Scholar
  109. 109.
    Saito H, Morikawa H, Howie K, Crawford L, Baatjes AJ, Denburg E, Cyr MM, Denburg JA (2004) Effects of a cysteinyl leukotriene receptor antagonist on eosinophil recruitment in experimental allergic rhinitis. Immunology 113:246–252.PubMedCrossRefGoogle Scholar
  110. 110.
    Yamaguchi Y, Suda T, Suda J, Eguchi M, Miura Y, Harada N, Tominaga A, Takatsu K (1988) Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosi-nophilic precursors. J Exp Med 167:43–56.PubMedCrossRefGoogle Scholar
  111. 111.
    Yamaguchi Y, Suda T, Ohta S, Tominaga K, Miura Y, Kasahara T (1991) Analysis of the survival of mature human eosinophils: interleukin-5 prevents apoptosis in mature human eosinophils. Blood 78:2542–2547.PubMedGoogle Scholar
  112. 112.
    Walsh GM, Hartnell A, Wardlaw AJ, Kurihara K, Sanderson CJ, Kay AB (1990) IL-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils, in a leucocyte integrin (CD11/18)-dependent manner. Immunology 71:258–265.PubMedGoogle Scholar
  113. 113.
    Underwood DC, Osborn RR, Newsholme SJ, Torphy TJ, Hay DW (1996) Persistent airway eosinophilia after leukotriene (LT) D4 administration in the guinea pig: modulation by the LTD4 receptor antagonist, pranlukast, or an interleukin-5 monoclonal antibody. Am J Respir Crit Care Med 154:850–857.PubMedGoogle Scholar
  114. 114.
    Nakajima H, Gleich GJ, Kita H (1996) Constitutive production of IL-4 and IL-10 and stimulated production of IL-8 by normal peripheral blood eosinophils. J Immunol 156:4859–4866.PubMedGoogle Scholar
  115. 115.
    Horie S, Gleich GJ, Kita H (1996) Cytokines directly induce degranulation and superoxide production from human eosinophils. J Allergy Clin Immunol 98:371–381.PubMedCrossRefGoogle Scholar
  116. 116.
    Takafuji S, Bischoff SC, De Weck AL, Dahinden CA (1991) IL-3 and IL-5 prime normal human eosinophils to produce leukotriene C4 in response to soluble agonists. J Immunol 147:3855–3861.PubMedGoogle Scholar
  117. 117.
    Menzies-Gow AN, Flood-Page PT, Robinson DS, Kay AB (2007) Effect of inhaled interleukin-5 on eosinophil progenitors in the bronchi and bone marrow of asthmatic and non-asthmatic volunteers. Clin Exp Allergy 37:1023–1032.PubMedCrossRefGoogle Scholar
  118. 118.
    Hamelmann E, Oshiba A, Loader J, Larsen GL, Gleich G, Lee J, Gelfand EW (1997) Anti-interleukin-5 antibody prevents airway hyperresponsiveness in a murine model of airway sensitization. Am J Respir Crit Care Med 155:819–825.PubMedGoogle Scholar
  119. 119.
    Hamelmann E, Cieslewicz G, Schwarze J, Ishizuka T, Joetham A, Heusser C, Gelfand EW (1999) Anti-interleukin 5 but not anti-IgE prevents airway inflammation and airway hyper-responsiveness. Am J Respir Crit Care Med 160:934–941.PubMedGoogle Scholar
  120. 120.
    Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG (1996) Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183:195–201.PubMedCrossRefGoogle Scholar
  121. 121.
    Mauser PJ, Pitman A, Witt A, Fernandez X, Zurcher J, Kung T, Jones H, Watnick AS, Egan RW, Kreutner W (1993) Inhibitory effect of the TRFK-5 anti-IL-5 antibody in a guinea pig model of asthma. Am Rev Respir Dis 148:1623–1627.PubMedGoogle Scholar
  122. 122.
    Mauser PJ, Pitman AM, Fernandez X, Foran SK, Adams GK, III, Kreutner W, Egan RW, Chapman RW (1995) Effects of an antibody to interleukin-5 in a monkey model of asthma. Am J Respir Crit Care Med 152:467–472.PubMedGoogle Scholar
  123. 123.
    Leckie MJ, ten Brinke A, Khan J, Diamant Z, O'Connor BJ, Walls CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R, Hansel TT, Holgate ST, Sterk PJ, Barnes PJ (2000) Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356:2144–2148.PubMedCrossRefGoogle Scholar
  124. 124.
    O'Byrne PM, Inman MD, Parameswaran K (2001) The trials and tribulations of IL-5, eosi-nophils, and allergic asthma. J Allergy Clin Immunol 108:503–508.PubMedCrossRefGoogle Scholar
  125. 125.
    Flood-Page P, Menzies-Gow A, Phipps S, Ying S, Wangoo A, Ludwig MS, Barnes N, Robinson D, Kay AB (2003). Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest 112:1029–1036.PubMedGoogle Scholar
  126. 126.
    Menzies-Gow A, Flood-Page P, Sehmi R, Burman J, Hamid Q, Robinson DS, Kay AB, Denburg J (2003) Anti-IL-5 (mepolizumab) therapy induces bone marrow eosinophil maturational arrest and decreases eosinophil progenitors in the bronchial mucosa of atopic asthmatics. J Allergy Clin Immunol 111:714–719.PubMedCrossRefGoogle Scholar
  127. 127.
    Simons FE, Simons KJ (1994) The pharmacology and use of H1-receptor-antagonist drugs. N Engl J Med 330:1663–1670.PubMedCrossRefGoogle Scholar
  128. 128.
    Van GE, Kaufman L, Derde MP, Yernault JC, Delaunois L, Vincken W (1997) Effects of anti-histamines in adult asthma: a meta-analysis of clinical trials. Eur Respir J 10:2216–2224.CrossRefGoogle Scholar
  129. 129.
    Sehmi R, Walsh GM, Hartnell A, Barkans J, North J, Kay AB, Moqbel R (1993) Modulation of human eosinophil chemotaxis and adhesion by anti-allergic drugs in vitro. Pediatr Allergy Immunol 4:13–18.PubMedCrossRefGoogle Scholar
  130. 130.
    Walsh GM (1994) The anti-inflammatory effects of cetirizine. Clin Exp Allergy 24:81–85.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gail M. Gauvreau
    • 1
  • Roma Sehmi
    • 2
  1. 1.The Firestone Institute for Respiratory Health, St Joseph's Hospital, Luke Wing, Room L314-6McMaster UniversityHamiltonCanada
  2. 2.Division of RespirologyDepartment of Medicine McMaster University, HSC-Room 3U25HamiltonCanada

Personalised recommendations