Airway Smooth Muscle Dysfunction in Asthma

  • Maria B. Sukkar
  • Kian Fan Chung
Part of the Allergy Frontiers book series (ALLERGY, volume 2)

Asthma is characterised by intermittent airflow obstruction with excessive bronchoconstriction and bronchial hyperresponsiveness (BHR). Since the airway smooth muscle (ASM) is the main contractile cell of the airways, it is clear that the ASM plays a major role in the genesis of these abnormalities. Airflow obstruction does not usually occur in non-asthmatics, thus one would presume that the ASM is abnormally contractile in asthma and there is now evidence that the abnormality of the contractile apparatus can be demonstrated in the asthmatic ASM itself. Therapies to relieve airflow obstruction promptly such as the inhalation of 2-adrenergic agonists are directly aimed at the ASM.


Connective Tissue Growth Factor Airway Smooth Muscle Allergy Clin Immunol Respir Crit Airway Smooth Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mead J (2007) Point: Airway smooth muscle is useful. J Appl Physiol 102: 1708–1709PubMedCrossRefGoogle Scholar
  2. 2.
    Fredberg JJ (2007) Counterpoint: Airway smooth muscle is not useful. J Appl Physiol 102: 1709–1710PubMedCrossRefGoogle Scholar
  3. 3.
    Mitzner W (2004) Airway Smooth Muscle: The Appendix of the Lung. Am J Respir Crit Care Med 169: 787–790PubMedCrossRefGoogle Scholar
  4. 4.
    Danek CJ, Lombard CM, Dungworth DL, Cox PG, Miller JD, Biggs MJ, Keast TM, Loomas BE, Wizeman WJ, Hogg JC, Leff AR (2004) Reduction in airway hyperresponsive-ness to methacholine by the application of RF energy in dogs. J Appl Physiol 97: 1946–1953PubMedCrossRefGoogle Scholar
  5. 5.
    Cox G, Miller JD, McWilliams A, FitzGerald JM, Lam S (2006) Bronchial thermoplasty for asthma. Am J Respir Crit Care Med 173: 965–969PubMedCrossRefGoogle Scholar
  6. 6.
    Cox G, Thomson NC, Rubin AS, Niven RM, Corris PA, Siersted HC, Olivenstein R, Pavord ID, McCormack D, Chaudhuri R, Miller JD, Laviolette M, the AIRTSG (2007) Asthma control during the year after bronchial thermoplasty. N Engl J Med 356: 1327–1337PubMedCrossRefGoogle Scholar
  7. 7.
    Woolcock AJ (1984) The shape of the dose-response curve to histamine in asthmatic and normal subjects. Am Rev Respir Dis 130: 71–75PubMedGoogle Scholar
  8. 8.
    McParland BE, Tait RR, Pare PD, Seow CY (2005) The role of airway smooth muscle during an attack of asthma simulated in vitro. Am J Respir Cell Mol Biol 33: 500–504PubMedCrossRefGoogle Scholar
  9. 9.
    An SS, Bai TR, Bates JHT, Black JL, Brown RH, Brusasco V, Chitano P, Deng L, Dowell M, Eidelman DH, Fabry B, Fairbank NJ, Ford LE, Fredberg JJ, Gerthoffer WT, Gilbert SH, Gosens R, Gunst SJ, Halayko AJ, Ingram RH, Irvin CG, James AL, Janssen LJ, King GG, Knight DA, Lauzon AM, Lakser OJ, Ludwig MS, Lutchen KR, Maksym GN, Martin JG, Mauad T, McParland BE, Mijailovich SM, Mitchell HW, Mitchell RW, Mitzner W, Murphy TM, Pare PD, Pellegrino R, Sanderson MJ, Schellenberg RR, Seow C Y, Silveira PSP, Smith PG, Solway J, Stephens NL, Sterk PJ, Stewart AG, Tang DD, Tepper RS, Tran T, Wang L (2007) Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur Respir J 29: 834–860PubMedCrossRefGoogle Scholar
  10. 10.
    Ebina M, Takahashi T, Chiba T, Motomiya M (1993) Cellular hypertrophy and hyperplasia of airway smooth muscle underlying bronchial asthma. Am Rev Respir Dis 148: 720–726PubMedGoogle Scholar
  11. 11.
    Benayoun L, Druilhe A, Dombret M-C, Aubier M, Pretolani M (2003) Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med 167: 1360–1368PubMedCrossRefGoogle Scholar
  12. 12.
    de Jongste JC MH, Bonta IL, Kerrebijn KF (1987) In vitro responses of airways from an asthmatic patient. Am Rev Respir Dis 71: 23–29Google Scholar
  13. 13.
    Bai TR (1990) Abnormalities in airway smooth muscle in fatal asthma. Am Rev Respir Dis 141: 552–557PubMedGoogle Scholar
  14. 14.
    Cerrina J, Le Roy Ladurie, Labat C, Raffestin B, Bayol A, Brink C (1986) Comparision of human bronchial muscle responses to histamine in vivo with histamine and isoproterenol agonists in vitro. Am Rev Respir Dis 134: 57–61PubMedGoogle Scholar
  15. 15.
    Matsumoto H, Moir LM, Oliver BG, Burgess JK, Roth M, Black JL, McParland BE (2007) Comparison of gel contraction mediated by asthmatic and non-asthmatic airway smooth muscle cells. Thorax 62: 848–854PubMedCrossRefGoogle Scholar
  16. 16.
    Ma X, Cheng Z, Kong H, Wang Y, Unruh H, Stephens NL, Laviolette M (2002) Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am J Physiol Lung Cell Mol Physiol 283: L1181–1189PubMedGoogle Scholar
  17. 17.
    Kamm KE, Stull JT (1985) The function of myosin and myosin light chain kinase phosphor-ylation in smooth muscle. Annu Rev Pharmacol Toxicol 25: 593–620PubMedCrossRefGoogle Scholar
  18. 18.
    James AL, Paré PD, Hogg JC (1989) The mechanics of airway narrowing in asthma. Am Rev Respir Dis 139: 242–246PubMedGoogle Scholar
  19. 19.
    Brown RH, Zerhouni EA, Mitzner W (1995) Airway edema potentiates airway reactivity. J Appl Physiol 79: 1242–1248PubMedGoogle Scholar
  20. 20.
    Skloot G, Togias A (2003) Bronchodilation and bronchoprotection by deep inspiration and their relationship to bronchial hyperresponsiveness. Clin Rev Allergy Immunol 24: 55–72PubMedCrossRefGoogle Scholar
  21. 21.
    Slats AM, Sont JK, van Klink RHCJ, Bel EHD, Sterk PJ (2006) Improvement in bronchodila-tion following deep inspiration after a course of high-dose oral prednisone in asthma. Chest 130: 58–65PubMedCrossRefGoogle Scholar
  22. 22.
    Pepe C, Foley S, Shannon J, Lemiere C, Olivenstein R, Ernst P, Ludwig MS, Martin JG, Hamid Q (2005) Differences in airway remodeling between subjects with severe and moderate asthma. J Allergy Clin Immunol 116: 544–549PubMedCrossRefGoogle Scholar
  23. 23.
    Woodruff PG, Dolganov GM, Ferrando RE, Donnelly S, Hays SR, Solberg OD, Carter R, Wong HH, Cadbury PS, Fahy JV (2004) Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am J Respir Crit Care Med 169: 1001–1006PubMedCrossRefGoogle Scholar
  24. 24.
    Johnson PRA, Roth M, Tamm M, Hughes M, Ge Q, King G, Burgess JK, Black JL (2001) Airway smooth muscle cell proliferation is increased in asthma. Am J Respir Crit Care Med 164: 474–477PubMedGoogle Scholar
  25. 25.
    Jeffery P (2001) Inflammation and remodelling in the adult and child with asthma. Pediatr Pulmonol Suppl 21: 3–16PubMedCrossRefGoogle Scholar
  26. 26.
    Hirst SJ, Martin JG, Bonacci JV, Chan V, Fixman ED, Hamid QA, Herszberg B, Lavoie J-P, McVicker CG, Moir LM, Nguyen TTB, Peng Q, Ramos-Barbon D, Stewart AG (2004) Proliferative aspects of airway smooth muscle. J Allergy Clin Immunol 114: S2–S17PubMedCrossRefGoogle Scholar
  27. 27.
    Salmon M, Walsh DA, Koto H, Barnes PJ, Chung KF (1999) Repeated allergen exposure of sensitized Brown-Norway rats induces airway cell DNA synthesis and remodelling. Eur Respir J 14: 633–641PubMedCrossRefGoogle Scholar
  28. 28.
    Ramos-Barbón D, Presley JF, Hamid QA, Fixman ED, Martin JG (2005) Antigen-specific CD4 + T cells drive airway smooth muscle remodeling in experimental asthma. J Clin Invest 115: 1580–1589PubMedCrossRefGoogle Scholar
  29. 29.
    Wang CG, Du T, Xu LJ, Martin JG (1993) Role of leukotriene D4 in allergen-induced increases in airway smooth muscle in the rat. Am Rev Respir Dis 148: 413–417PubMedGoogle Scholar
  30. 30.
    Tang W, Geba GP, Zheng T, Ray P, Homer RJ, Kuhn C, Flavell RA, Elias JA (1996) Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction. J Clin Invest 98: 2845–2853PubMedCrossRefGoogle Scholar
  31. 31.
    Salmon M, Walsh DA, Huang T-J, Barnes PJ, Leonard TB, Hay DWP, Chung KF (1999) Involvement of cysteinyl leukotrienes in airway smooth muscle cell DNA synthesis after repeated allergen exposure in sensitized Brown Norway rats. Br J Pharmacol 127: 1151–1158PubMedCrossRefGoogle Scholar
  32. 32.
    Salmon M, Liu YC, Mak JC, Rousell J, Huang TJ, Hisada T, Nicklin PL, Chung KF (2000) Contribution of upregulated airway endothelin-1 expression to airway smooth muscle and epithelial cell DNA synthesis after repeated allergen exposure of sensitized brown-Norway rats. Am J Respir Cell Mol Biol 23: 618–625PubMedGoogle Scholar
  33. 33.
    Cho JY, Miller M, Baek KJ, Han JW, Nayar J, Lee SY, McElwain K, McElwain S, Friedman S, Broide DH (2004) Inhibition of airway remodeling in IL-5—deficient mice. J Clin Invest 113: 551–560PubMedGoogle Scholar
  34. 34.
    Leigh R, Ellis R, Wattie JN, Hirota JA, Matthaei KI, Foster PS, O'Byrne PM, Inman MD (2004) Type 2 Cytokines in the pathogenesis of sustained airway dysfunction and airway remodeling in mice. Am J Respir Crit Care Med 169: 860–867PubMedCrossRefGoogle Scholar
  35. 35.
    Leung SY, Niimi A, Noble A, Oates T, Williams AS, Medicherla S, Protter AA, Chung KF (2006) Effect of transforming growth factor-beta receptor I kinase inhibitor 2,4-disubstituted pteridine (SD-208) in chronic allergic airway inflammation and remodeling. J Pharmacol Exp Ther 319: 586–594PubMedCrossRefGoogle Scholar
  36. 36.
    Nath P, Yee Leung S, Williams AS, Noble A, Xie S, McKenzie ANJ, Chung KF (2007) Complete inhibition of allergic airway inflammation and remodelling in quadruple IL-4/5/9/13 mice. Clin Exp Allergy 37: 1427–1435PubMedGoogle Scholar
  37. 37.
    Roth M, Johnson PRA, Borger P, Bihl MP, Rudiger JJ, King GG, Ge Q, Hostettler K, Burgess JK, Black JL, Tamm M (2004) Dysfunctional Interaction of C/EBPα and the gluco-corticoid receptor in asthmatic bronchial smooth-muscle cells. N Engl J Med 351: 560–574PubMedCrossRefGoogle Scholar
  38. 38.
    Roth M, Johnson PRA, Rudiger JJ, King GG, Ge Q, Burgess JK, Anderson G, Tamm M, Black JL (2002) Interaction between glucocorticoids and [beta]2 agonists on bronchial airway smooth muscle cells through synchronised cellular signalling. Lancet 360: 1293–1299PubMedCrossRefGoogle Scholar
  39. 39.
    Burgess JK, Johnson PRA, Ge Q, Au WW, Poniris MH, McParland BE, King G, Roth M, Black JL (2003) Expression of connective tissue growth factor in asthmatic airway smooth muscle cells. Am J Respir Crit Care Med 167: 71–77PubMedCrossRefGoogle Scholar
  40. 40.
    Xie S, Sukkar MB, Issa R, Khorasani NM, Chung KF (2007) Mechanisms of induction of airway smooth muscle hyperplasia by transforming growth factor-β. Am J Physiol Lung Cell Mol Physiol 293:L245–253PubMedCrossRefGoogle Scholar
  41. 41.
    Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S (2003) Identification of circulating fibro-cytes as precursors of bronchial myofibroblasts in asthma. J Immunol 171: 380–389PubMedGoogle Scholar
  42. 42.
    Brewster CE, Howarth PH, Djukanovic R, Wilson J, Holgate ST, Roche WR (1990) Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 3: 507–511PubMedGoogle Scholar
  43. 43.
    Gizycki MJ, Adelroth E, Rogers AV, O'Byrne PM, Jeffery PK (1997) Myofibroblast involvement in the allergen-induced late response in mild atopic asthma. Am J Respir Cell Mol Biol 16: 664–673PubMedGoogle Scholar
  44. 44.
    Hedges JC, Dechert MA, Yamboliev IA, Martin JL, Hickey E, Weber LA, Gerthoffer WT (1999) A role for p38MAPK/HSP27 pathway in smooth muscle cell migration. J Biol Chem 274: 24211–24219PubMedCrossRefGoogle Scholar
  45. 45.
    Goncharova EA, Billington CK, Irani C, Vorotnikov AV, Tkachuk VA, Penn RB, Krymskaya VP, Panettieri RA, Jr. (2003) Cyclic AMP-mobilizing agents and glucocorticoids modulate human smooth muscle cell migration. Am J Respir Cell Mol Biol 29: 19–27PubMedCrossRefGoogle Scholar
  46. 46.
    Parameswaran K, Radford K, Fanat A, Stephen J, Bonnans C, Levy BD, Janssen LJ, Cox PG (2007) Modulation of human airway smooth muscle migration by lipid mediators and Th-2 cytokines. Am J Respir Cell Mol Biol 37: 240–247PubMedCrossRefGoogle Scholar
  47. 47.
    Parameswaran K, Cox G, Radford K, Janssen LJ, Sehmi R, O'Byrne PM (2002) Cysteinyl leukotrienes promote human airway smooth muscle migration. Am J Respir Crit Care Med 166: 738–742PubMedCrossRefGoogle Scholar
  48. 48.
    Hirakawa M, Karashima Y, Watanabe M, Kimura C, Ito Y, Oike M (2007) Protein kinase A inhibits lysophosphatidic acid-induced migration of airway smooth muscle cells. J Pharmacol Exp Ther 321: 1102–1108PubMedCrossRefGoogle Scholar
  49. 49.
    Mukhina S, Stepanova V, Traktouev D, Poliakov A, Beabealashvilly R, Gursky Y, Minashkin M, Shevelev A, Tkachuk V (2000) The chemotactic action of Urokinase on smooth muscle cells is dependent on its Kringle domain. Characterization of interactions and contribution to chemotaxis. J Biol Chem 275: 16450–16458PubMedCrossRefGoogle Scholar
  50. 50.
    Goncharova EA, Vorotnikov AV, Gracheva EO, Wang CL, Panettieri RA, Stepanova V V, Tkachuk VA (2002) Activation of p38 MAP-kinase and caldesmon phosphorylation are essential for urokinase-induced human smooth muscle cell migration. Biol Chem 383: 115–126PubMedCrossRefGoogle Scholar
  51. 51.
    Carlin SM, Roth M, Black JL (2003) Urokinase potentiates PDGF-induced chemotaxis of human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 284: L1020–1026PubMedGoogle Scholar
  52. 52.
    Carlin SM, Resink TJ, Tamm M, Roth M (2005) Urokinase signal transduction and its role in cell migration. FASEB J 19: 195–202PubMedCrossRefGoogle Scholar
  53. 53.
    Joubert P, Lajoie-Kadoch S, Labonte I, Gounni AS, Maghni K, Wellemans V, Chakir J, Laviolette M, Hamid Q, Lamkhioued B (2005) CCR3 Expression and function in asthmatic airway smooth muscle cells. J Immunol 175: 2702–2708PubMedGoogle Scholar
  54. 54.
    Kaur D, Saunders R, Berger P, Siddiqui S, Woodman L, Wardlaw A, Bradding P, Brightling CE (2006) Airway smooth muscle and mast cell-derived CC chemokine ligand 19 mediate airway smooth muscle migration in asthma. Am J Respir Crit Care Med 174: 1179–1188PubMedCrossRefGoogle Scholar
  55. 55.
    Govindaraju V, Michoud M-C, Al-Chalabi M, Ferraro P, Powell WS, Martin JG (2006) Interleukin-8: novel roles in human airway smooth muscle cell contraction and migration. Am J Physiol Cell Physiol 291: C957–965PubMedCrossRefGoogle Scholar
  56. 56.
    Chan V, Burgess JK, Ratoff JC, O'Connor BJ, Greenough A, Lee TH, Hirst SJ (2006) Extracellular matrix regulates enhanced eotaxin expression in asthmatic airway smooth muscle cells. Am J Respir Crit Care Med 174: 379–385PubMedCrossRefGoogle Scholar
  57. 57.
    Ghaffar O, Hamid Q, Renzi PM, Allakhverdi Z, Molet S, Hogg JC, Shore SA, Luster AD, Lamkhioued B (1999) Constitutive and cytokine stimulated expression of eotaxin by human airway smooth muscle cells. Am J Respir Crit Care Med 159: 1933–1942PubMedGoogle Scholar
  58. 58.
    Brightling CE, Ammit AJ, Kaur D, Black JL, Wardlaw AJ, Hughes JM, Bradding P (2005) The CXCL10/CXCR3 axis mediates human lung mast cell migration to asthmatic airway smooth muscle. Am J Respir Crit Care Med 171: 1103–1108PubMedCrossRefGoogle Scholar
  59. 59.
    El-Shazly A, Berger P, Girodet P-O, Ousova O, Fayon M, Vernejoux J-M, Marthan R, Tunon-de-Lara JM (2006) Fraktalkine produced by airway smooth muscle cells contributes to mast cell recruitment in asthma. J Immunol 176: 1860–1868PubMedGoogle Scholar
  60. 60.
    Berger P, Girodet P-O, Begueret H, Ousova O, Perng D-W, Marthan R, Walls AF, Tunon de Lara JM (2003) Tryptase-stimulated human airway smooth muscle cells induce cytokine synthesis and mast cell chemotaxis. FASEB Journal 17: 2139–2141PubMedGoogle Scholar
  61. 61.
    Berkman N, Robichaud A, Krishnan VL, Roesems G, Robbins R (1996) Expression of RANTES in human airway epithelial cells: effect of corticosteroids and interleukin-4, −10 and −13. Immunol 87: 599–603CrossRefGoogle Scholar
  62. 62.
    John M, Hirst SJ, Jose PJ, Robichaud A, Berkman N, Witt C, Twort CHC, Barnes PJ, Chung KF (1997) Human airway smooth muscle cells express and release RANTES in response to T helper 1 cytokines. J Immunol 158: 1841–1847PubMedGoogle Scholar
  63. 63.
    John M, Au B, Jose PJ, Lim S, Saunders M, Barnes PJ, Mitchell JA, Belvisi MG, Chung KF (1998) Expression and release of interleukin-8 by human airway smooth muscle cells: inhibition by Th2 cytokines and corticosteroids. Am J Respir Cell Mol Biol 18: 84–90PubMedGoogle Scholar
  64. 64.
    Watson ML, Grix SP, Jordan NJ, Place GA, Dodd S, Leithead J, Poll CT, Yoshimura T, Westwick J (1998) Interleukin-8 and monocyte chemoattractant protein 1 production by cultured human airway smooth muscle cells. Cytokine 10: 346–352PubMedCrossRefGoogle Scholar
  65. 65.
    Saunders MA, Mitchell JA, Seldon PM, Yacoub MH, Barnes PJ, Giembycz MA, Belvisi MG (1997) Release of granulocyte-macrophage colony stimulating factor by human cultured airway smooth muscle cells: suppression by dexamethasone. Br J Pharmacol 120: 545–546PubMedCrossRefGoogle Scholar
  66. 66.
    Chung KF, Patel HJ, Fadlon EJ, Rousell J, Haddad E, Jose P, Mitchell J, Belvisi M (1999) Induction of eotaxin expression and release from human airway smooth muscle cells by IL-1β and TNF-α: effects of IL-10 and corticosteroids. Br J Pharmacol 127: 1145–1150PubMedCrossRefGoogle Scholar
  67. 67.
    Pype JL, Dupont LJ, Menten P, Van Coillie E, Opdenakker G, Van Damme J, Chung KF, Demedts MG, Verleden GM (1999) Expression of monocyte chemotactic protein (MCP)-1, MCP-2, and MCP-3 by human airway smooth muscle cells. Modulation by corticosteroids and T-helper 2 cytokines. Am J Respir Cell Mol Biol 21: 528–536PubMedGoogle Scholar
  68. 68.
    Sukkar MB, Hughes JM, Johnson PRA, Armour CL (2000) GM-CSF production from human airway smooth muscle cells is potentiated by human serum. Med Inflammat 9: 161–168CrossRefGoogle Scholar
  69. 69.
    McKay S, Hirst SJ, Bertrand-de Haas M, J.C. dJ, Hoogsteden HC, Saxena PR, Sharma HS (2000) Tumour necrosis factor-α enhances mRNA expression and secretion of interleukin-6 in cultured human airway smooth muscle cells. Am J Respir Cell Mol Biol 23: 103–111PubMedGoogle Scholar
  70. 70.
    Clarke DL, Belvisi MG, Catley MC, Yacoub MH, Newton R, Giembycz MA (2004) Identification in human airways smooth muscle cells of the prostanoid receptor and signalling pathway through which PGE2 inhibits the release of GM-CSF. Br J Pharmacol 141: 1141–1150PubMedCrossRefGoogle Scholar
  71. 71.
    Jarai G, Sukkar M, Garrett S, Duroudier N, Westwick J, Adcock I, Fan Chung K (2004) Effects of interleukin-1[beta], interleukin-13 and transforming growth factor-[beta] on gene expression in human airway smooth muscle using gene microarrays. Eur J Pharmacol 497: 255–265PubMedCrossRefGoogle Scholar
  72. 72.
    Hardaker EL, Bacon AM, Carlson K, Roshak AK, Foley JJ, Schmidt DB, Buckley PT, Comegys M, Panettieri J, Reynold A., Sarau HM, Belmonte KE (2004) Regulatio6n of TNF-α and IFN-γ induced CXCL10 expression: participation of the airway smooth muscle in the pulmonary inflammatory response in chronic obstructive pulmonary disease. FASEB J 18: 191–193PubMedGoogle Scholar
  73. 73.
    Clarke DL, Belvisi MG, Smith SJ, Hardaker E, Yacoub MH, Meja KK, Newton R, Slater DM, Giembycz MA (2005) Prostanoid receptor expression by human airway smooth muscle cells and regulation of the secretion of granulocyte colony-stimulating factor. Am J Physiol Lung Cell Mol Physiol 288: L238–250PubMedCrossRefGoogle Scholar
  74. 74.
    Fayon M, Rebola M, Berger P, Daburon S, Ousova O, Lavrand F, Moukaila B, Pujol W, Taupin JL, Labbe A, Molimard M, Marthan R (2006) Increased secretion of leukemia inhibitory factor by immature airway smooth muscle cells enhances intracellular signaling and airway contractility. Am J Physiol Lung Cell Mol Physiol 291: L244–251PubMedCrossRefGoogle Scholar
  75. 75.
    Catley MC, Sukkar MB, Chung KF, Jaffee B, Liao S-M, Coyle AJ, Haddad E-B, Barnes PJ, Newton R (2006) Validation of the anti-inflammatory properties of small-molecule IκB kinase (IKK)-2 inhibitors by comparison with adenoviral-mediated delivery of dominant-negative IKK1 and IKK2 in human airways smooth muscle. Mol Pharmacol 70: 697–705PubMedCrossRefGoogle Scholar
  76. 76.
    Issa R, Xie S, Lee K-Y, Stanbridge RD, Bhavsar P, Sukkar MB, Chung KF (2006) GRO-α regulation in airway smooth muscle by IL-1β and TNF-α role of NF-κB and MAP kinases. Am J Physiol Lung Cell Mol Physiol 291: L66–74PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang K, Shan L, Rahman MS, Unruh H, Halayko AJ, Gounni AS (2007) Constitutive and inducible thymic stromal lymphopoietin expression in human airway smooth muscle cells: role in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 293: L375–382PubMedCrossRefGoogle Scholar
  78. 78.
    Sukkar MB, Issa R, Xie S, Oltmanns U, Newton R, Chung KF (2004) Fractalkine/CX3CL1 production by human airway smooth muscle cells: induction by IFN-γ and TNF-α and regulation by TGF-β and corticosteroids. Am J Physiol Lung Cell Mol Physiol 287: L1230–1240PubMedCrossRefGoogle Scholar
  79. 79.
    Keslacy S, Tliba O, Baidouri H, Amrani Y (2007) Inhibition of tumor necrosis factor-α-inducible inflammatory genes by interferon-{gamma} is associated with altered nuclear factor-κB trans-activation and enhanced histone deacetylase activity. Mol Pharmacol 71: 609–618PubMedCrossRefGoogle Scholar
  80. 80.
    Lee JH, Kaminski N, Dolganov G, Grunig G, Koth L, Solomon C, Erle DJ, Sheppard D (2001) Interleukin-13 induces dramatically different transcriptional programs in three human airway cell types. Am J Respir Cell Mol Biol 25: 474–485PubMedGoogle Scholar
  81. 81.
    Hirst SJ, Hallsworth MP, Peng Q, Lee TH (2002) Selective induction of eotaxin release by interleukin-13 or interleukin-4 in human airway smooth muscle cells is synergistic with interleukin-1b and is mediated by the interleukin-4 receptor α-chain. Am J Respir Crit Care Med 165: 1161–1171PubMedGoogle Scholar
  82. 82.
    Moore PE, Church TL, Chism DD, Panettieri RA, Shore SA (2002) IL-13 and IL-4 cause eotaxin release in human airway smooth muscle cells: a role for ERK. Am J Physiol 282: L847–L853Google Scholar
  83. 83.
    Baraldo S, Faffe DS, Moore PE, Whitehead T, Mckenna M, Silverman ES, Panettieri RA, Shore SA (2003) Interleukin-9 influences chemokine release in airway smooth muscle: role of ERK. Am J Physiol 284: L1093–L1102Google Scholar
  84. 84.
    Faffe DS, Whitehead T, Moore PE, Baraldo S, Flynt L, Bourgeois K, Panettieri RA, Shore SA (2003) IL-13 and IL-4 promote TARC release in human airway smooth muscle cells: role of IL-4 receptor genotype. Am J Physiol 285: L907–L914Google Scholar
  85. 85.
    Zuyderduyn S, Hiemstra PS, Rabe KF (2004) TGF-β differentially regulates TH2 cytokine-induced eotaxin and eotaxin-3 release by human airway smooth muscle cells. J Allergy Clin Immunol 114: 791–798PubMedCrossRefGoogle Scholar
  86. 86.
    Gounni AS, Hamid Q, Rahman SM, Hoeck J, Yang J, Shan L (2004) IL-9-mediated induction of eotaxin1/CCL11 in human airway smooth muscle cells. J Immunol 173: 2771–2779PubMedGoogle Scholar
  87. 87.
    Syed F, Panettieri R, Tliba O, Huang C, Li K, Bracht M, Amegadzie B, Griswold D, Li L, Amrani Y (2005) The effect of IL-13 and IL-13R130Q, a naturally occurring IL-13 polymorphism, on the gene expression of human airway smooth muscle cells. Respir Res 6: 9PubMedCrossRefGoogle Scholar
  88. 88.
    Rahman MS, Yang J, Shan LY, Unruh H, Yang X, Halayko AJ, Gounni AS (2005) IL-17R activation of human airway smooth muscle cells induces CXCL-8 production via a transcriptional-dependent mechanism. Clini Immunol115: 268–276CrossRefGoogle Scholar
  89. 89.
    Wuyts WA, Vanaudenaerde BM, Dupont LJ, Van Raemdonck DE, Demedts MG, Verleden GM (2005) Interleukin-17-induced interleukin-8 release in human airway smooth muscle cells: Role for mitogen-activated kinases and nuclear factor-KB. J Heart Lung Transplant 24: 875–881PubMedCrossRefGoogle Scholar
  90. 90.
    Henness S, Johnson CK, Ge Q, Armour CL, Hughes JM, Ammit AJ (2004) IL-17A augments TNF-[alpha]-induced IL-6 expression in airway smooth muscle by enhancing mRNA stability. J Allergy Clin Immunol 114: 958–964PubMedCrossRefGoogle Scholar
  91. 91.
    Rahman MS, Yamasaki A, Yang J, Shan L, Halayko AJ, Gounni AS (2006) IL-17A Induces eotaxin-1/CC chemokine ligand 11 expression in human airway smooth muscle cells: Role of MAPK (Erk1/2, JNK, and p38) pathways. J Immunol 177: 4064–4071PubMedGoogle Scholar
  92. 92.
    Lajoie-Kadoch S, Joubert P, Letuve S, Halayko AJ, Martin JG, Soussi-Gounni A, Hamid Q (2006) TNF-α and IFN-y inversely modulate expression of the IL-17E receptor in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290: L1238–1246PubMedCrossRefGoogle Scholar
  93. 93.
    Dragon S, Rahman MS, Yang J, Unruh H, Halayko AJ, Gounni AS (2007) IL-17 enhances IL-1 β-mediated CXCL-8 release from human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292: L1023–1029PubMedCrossRefGoogle Scholar
  94. 94.
    Elias JA, Wu Y, Zheng T, Panettiere R (1997) Cytokine- and virus-stimulated airway smooth muscle cells produce IL-11 and other IL-6-type cytokines. Am J Physiol Lung Cell Mol Physiol 273: L648–L655Google Scholar
  95. 95.
    Begueret H, Berger P, Vernejoux JM, Dubuisson L, Marthan R, Tunon-de-Lara JM (2007) Inflammation of bronchial smooth muscle in allergic asthma. Thorax 62: 8–15PubMedCrossRefGoogle Scholar
  96. 96.
    Hallsworth MP, Soh CPC, Twort CHC, Lee TH, Hirst SJ (1998) Cultured human airway smooth muscle cells stimulated by interleukin-1β enhance eosinophil survival. Am J Respir Cell Mol Biol 19: 910–919PubMedGoogle Scholar
  97. 97.
    Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID (2002) Mast-Cell Infiltration of Airway Smooth Muscle in Asthma. N Engl J Med 346: 1699–1705PubMedCrossRefGoogle Scholar
  98. 98.
    Slats AM, Janssen K, van Schadewijk A, van der Plas DT, Schot R, van den Aardweg JG, de Jongste JC, Hiemstra PS, Mauad T, Rabe KF, Sterk PJ (2007) Bronchial inflammation and airway responses to deep inspiration in asthma and COPD. Am J Respir Crit Care Med 176: 121–128PubMedCrossRefGoogle Scholar
  99. 99.
    Sutcliffe A, Kaur D, Page S, Woodman L, Armour CL, Baraket M, Bradding P, Hughes JM, Brightling CE (2006) Mast cell migration to Th2 stimulated airway smooth muscle from asthmatics. Thorax 61: 657–662PubMedCrossRefGoogle Scholar
  100. 100.
    Carroll NG, Mutavdzic S, James AL (2002) Increased mast cells and neutrophils in submucosal mucous glands and mucus plugging in patients with asthma. Thorax 57: 677–682PubMedCrossRefGoogle Scholar
  101. 101.
    Thangam EB, Venkatesha RT, Zaidi AK, Jordan-Sciutto KL, Goncharov DA, Krymskaya VP, Amrani Y, Panettieri JRA, Ali H (2005) Airway smooth muscle cells enhance C3a-induced mast cell degranulation following cell-cell contact. FASEB J 19:798–800PubMedGoogle Scholar
  102. 102.
    Vigano T, Habib A, Hernandez A, Bonazzi A, Boraschi D, Lebret M, Cassina E, Maclouf J, Sala A, Folco G (1997) Cyclooxygenase-2 and synthesis of PGE2 in human bronchial smooth muscle cells. Am J Respir Crit Care Med 155: 864–868PubMedGoogle Scholar
  103. 103.
    Belvisi MG, Saunders MA, Haddad E, Hirst SJ, Yacoub MH, Barnes PJ, Mitchell JA (1997) Induction of cyclo-oxygenase-2 by cytokines in human cultured airway smooth muscle cells: novel inflammatory role of this cell type. Br J Pharmacol 120: 910–916PubMedCrossRefGoogle Scholar
  104. 104.
    Fong CY, Pang L, Holland E, Knox AJ (2000) TGF-P1 stimulates IL-8 release, COX-2 expression, and PGE2 release in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 279: L201–L207PubMedGoogle Scholar
  105. 105.
    Pang L, Knox AJ (1997) Effect of interleukin-1β, tumor necrosis factor-α and interferon-γ on the induction of cyclo-oxygenase-2 in cultured human airway smooth muscle cells. Br J Pharmacol 1997: 579–587CrossRefGoogle Scholar
  106. 106.
    Pang L, Knox AJ (1997) PGE2 release by bradykinin in human airway smooth muscle cells: involvement of cyclooxygenase-2 induction. Am J Physiol 273: L1132–L1140PubMedGoogle Scholar
  107. 107.
    Chambers LS, Black JL, Ge Q, Carlin SM, Au WW, Poniris M, Thompson J, Johnson PR, Burgess JK (2003) PAR-2 activation, PGE2, and COX-2 in human asthmatic and nonasth-matic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 285: L619–627PubMedGoogle Scholar
  108. 108.
    Pascual RM, Carr EM, Seeds MC, Guo M, Panettieri RA, Jr., Peters SP, Penn RB (2006) Regulatory features of interleukin-1beta-mediated prostaglandin E2 synthesis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 290: L501–508PubMedCrossRefGoogle Scholar
  109. 109.
    Johnson PRA, Armour CL, Carey D, Black JL (1995) Heparin and PGE2 inhibit DNA synthesis in human airway smooth muscle cells in culture. Am J Physiol 269: L514–519PubMedGoogle Scholar
  110. 110.
    Pavord ID, Tattersfield AE (1995) Bronchoprotective role for endogenous prostaglandin E2. Lancet 345: 436–438PubMedCrossRefGoogle Scholar
  111. 111.
    Panettieri RA, Lazaar AL, Pure E, Albelda SM (1995) Activation of cAMP-dependent pathways in human airway smooth muscle cells inhibits TNF-α-induced ICAM-1 and VCAM-1 expression and T lymphocyte adhesion. J Immunol154: 2358–2365PubMedGoogle Scholar
  112. 112.
    Lazzeri N, Belvisi MG, Patel HJ, Yacoub MH, Chung KF, Mitchell JA (2001) Effects of prostaglandin E2 and cAMP elevating drugs on GM-CSF release by cultured human airway smooth muscle cells. Relevance to asthma therapy. Am J Respir Cell Mol Biol 24: 44–48Google Scholar
  113. 113.
    Lazzeri N, Belvisi MG, Patel HJ, Chung KF, Yacoub MH, Mitchell JA (2001) RANTES release by human airway smooth muscle: effects of prostaglandin E2 and fenoterol. Eur J Pharmacol 433: 231–235PubMedCrossRefGoogle Scholar
  114. 114.
    Burgess JK, Blake AE, Boustany S, Johnson PRA, Armour CL, Black JL, Hunt NH, Hughes JM (2005) CD40 and OX40 ligand are increased on stimulated asthmatic airway smooth muscle. J Allergy Clin Immunol 115: 302–308PubMedCrossRefGoogle Scholar
  115. 115.
    Burgess JK, Ge Q, Poniris MH, Boustany S, Twigg SM, Black JL, Johnson PRA (2006) Connective tissue growth factor and vascular endothelial growth factor from airway smooth muscle interact with the extracellular matrix. Am J Physiol Lung Cell Mol Physiol 290: L153–161PubMedCrossRefGoogle Scholar
  116. 116.
    Ammit AJ, Lazaar AL, Irani C, O'Neill GM, Gordon ND, Amrani Y, Penn RB, Panettieri RA, Jr. (2002) Tumor necrosis factor-alpha -induced secretion of RANTES and interleukin-6 from human airway smooth muscle cells. Modulation by glucocorticoids and beta-agonists. Am J Respir Cell Mol Biol 26: 465–474PubMedGoogle Scholar
  117. 117.
    Knox AJ, Corbett L, Stocks J, Holland E, Zhu YM, Pang L (2001) Human airway smooth muscle cells secrete vascular endothelial growth factor: up-regulation by bradykinin via a protein kinase C and prostanoid-dependent mechanism. FASEB J 15: 2480–2488PubMedCrossRefGoogle Scholar
  118. 118.
    Stocks J, Bradbury D, Corbett L, Pang L, Knox AJ (2005) Cytokines upregulate vascular endothelial growth factor secretion by human airway smooth muscle cells: Role of endogenous prostanoids. FEBS Lett 579: 2551–2556PubMedCrossRefGoogle Scholar
  119. 119.
    Bradbury D, Clarke D, Seedhouse C, Corbett L, Stocks J, Knox A (2005) Vascular endothelial growth factor induction by prostaglandin E2 in human airway smooth muscle cells is mediated by E prostanoid EP2/EP4 receptors and SP-1 transcription factor binding sites. J Biol Chem 280: 29993–30000PubMedCrossRefGoogle Scholar
  120. 120.
    Gounni AS, Wellemans V, Yang J, Bellesort F, Kassiri K, Gangloff S, Guenounou M, Halayko AJ, Hamid Q, Lamkhioued B (2005) Human airway smooth muscle cells express the high affinity receptor for IgE (Fc{epsilon}RI): A critical role of Fc{epsilon}RI in human airway Smooth Muscle Cell Function. J Immunol 175: 2613–2621PubMedGoogle Scholar
  121. 121.
    Hakonarson H, Carter C, Kim C, Grunstein MM (1999) Altered expression and action of the low affinity IgE receptor FceRII (CD23) in asthmatic airway smooth muscle. J Allergy Clin Immunol 104: 575–584PubMedCrossRefGoogle Scholar
  122. 122.
    Hakonarson H, Grunstein MM (1998) Autologously up-regulated Fc receptor expression and action in airway smooth muscle mediates its altered responsiveness in the atopic asthmatic sensitized state. Proc Natl Acad Sci USA 95: 5257–5262PubMedCrossRefGoogle Scholar
  123. 123.
    Belleau J, Gandhi R, McPherson H, Lew DB (2005) Research Upregulation of CD23 (FcepsilonRII) Expression in Human Airway Smooth Muscle Cells (huASMC) in Response to IL-4, GM-CSF, and IL-4/GM-CSF. Clin Mol Allergy 3: 6PubMedCrossRefGoogle Scholar
  124. 124.
    Lazaar AL, Albelda SM, Pilewski JM, Brennan B, Pure E, Panettieri RA (1994) T lymphocytes adhere to airway smooth muscle cells via integrins and CD44 and induce smooth muscle cell DNA synthesis. J Exp Med 180: 807–816PubMedCrossRefGoogle Scholar
  125. 125.
    Lazaar AL, Reitz HE, Panettieri RA, Peters SP, Pure E (1997) Antigen receptor-stimulated peripheral blood and bronchoalveolar lavage-derived T cells induce MHC Class II and ICAM-1 expression on human airway smooth muscle. Am J Respir Cell Mol Biol 16: 38–45PubMedGoogle Scholar
  126. 126.
    Hakonarson H, Kim C, Whelan R, Campbell D, Grunstein MM (2001) Bi-directional activation between human airway smooth muscle cells and T lymphocytes: role in induction of altered airway responsiveness. J Immunol 166: 293–303PubMedGoogle Scholar
  127. 127.
    Lin W-N, Luo S-F, Lee C-W, Wang C-C, Wang J-S, Yang C-M (2007) Involvement of MAPKs and NF-κB in LPS-induced VCAM-1 expression in human tracheal smooth muscle cells. Cell Signal 19:1258–1267PubMedCrossRefGoogle Scholar
  128. 128.
    Veler H, Hu A, Fatma S, Grunstein JS, DeStephan CM, Campbell D, Orange JS, Grunstein MM (2007) Superantigen presentation by airway smooth muscle to CD4 + T lymphocytes elicits reciprocal proasthmatic changes in airway function. J Immunol 178: 3627–3636PubMedGoogle Scholar
  129. 129.
    Lazaar AL, Amrani Y, Hsu J, Panettieri RA, Fanslow WC, Albelda SM, Pure E (1998) CD40-mediated signal transduction in human airway smooth muscle. J Immunol 1998: 3120–3127Google Scholar
  130. 130.
    Burgess JK, Carlin S, Pack RA, Arndt GM, Au WW, Johnson PRA, Black JL, Hunt NH (2004) Detection and characterization of OX40 ligand expression in human airway smooth muscle cells A possible role in asthma? J Allergy Clin Immunol 113: 683–689PubMedCrossRefGoogle Scholar
  131. 131.
    Hakonarson H, Whelan R, Leiter J, Kim C, Chen M, Campbell D, Grunstein MM (2002) T lymphocyte-mediated changes in airway smooth muscle responsiveness are attributed to induced autocrine release and actions of IL-5 and IL-1β. J Allergy Clin Immunol 110: 624–633PubMedCrossRefGoogle Scholar
  132. 132.
    Kaisho T, Akira S (2006) Toll-like receptor function and signaling. J Allergy Clin Immunol 117: 979–987PubMedCrossRefGoogle Scholar
  133. 133.
    Sukkar MB, Xie S, Khorasani NM, Kon OM, Stanbridge R, Issa R, Chung KF (2006) Tolllike receptor 2, 3, and 4 expression and function in human airway smooth muscle. J Allergy Clin Immunol 118: 641–648PubMedCrossRefGoogle Scholar
  134. 134.
    Lee C-W, Chien C-S, Yang C-M (2004) Lipoteichoic acid-stimulated p42/p44 MAPK activation via Toll-like receptor 2 in tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 286: L921–930PubMedCrossRefGoogle Scholar
  135. 135.
    Morris GE, Whyte MKB, Martin GF, Jose PJ, Dower SK, Sabroe I (2005) Agonists of Tolllike Receptors 2 and 4 Activate Airway Smooth Muscle via Mononuclear Leukocytes. Am J Respir Crit Care Med 171: 814–822PubMedCrossRefGoogle Scholar
  136. 136.
    Shan X, Hu A, Veler H, Fatma S, Grunstein JS, Chuang S, Grunstein MM (2006) Regulation of Toll-like receptor 4-induced proasthmatic changes in airway smooth muscle function by opposing actions of ERK1/2 and p38 MAPK signaling. Am J Physiol Lung Cell Mol Physiol 291: L324–333PubMedCrossRefGoogle Scholar
  137. 137.
    Morris GE, Parker LC, Ward JR, Jones EC, Whyte MKB, Brightling CE, Bradding P, Dower SK, Sabroe I (2006) Cooperative molecular and cellular networks regulate Toll-like receptor-dependent inflammatory responses. FASEB J 20: 2153–2155PubMedCrossRefGoogle Scholar
  138. 138.
    Niimi K, Asano K, Shiraishi Y, Nakajima T, Wakaki M, Kagyo J, Takihara T, Suzuki Y, Fukunaga K, Shiomi T, Oguma T, Sayama K, Yamaguchi K, Natori Y, Matsumoto M, Seya T, Yamaya M, Ishizaka A (2007) TLR3-mediated synthesis and release of eotaxin-1/ CCL11 from human bronchial smooth muscle cells stimulated with double-stranded RNA. J Immunol 178: 489–495PubMedGoogle Scholar
  139. 139.
    Oliver B, Johnston S, Baraket M, Burgess J, King N, Roth M, Lim S, Black J (2006) Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection. Respir Res 7: 71PubMedCrossRefGoogle Scholar
  140. 140.
    Bachar O, Adner M, Uddman R, Cardell L-O (2004) Toll-like receptor stimulation induces airway hyper-responsiveness to bradykinin, an effect mediated by JNK and NF-κB signaling pathways. European J Immunol 34: 1196–1207CrossRefGoogle Scholar
  141. 141.
    Grunstein MM, Hakonarson H, Whelan R, Yu Z, Grunstein JS, Chuang S (2001) Rhinovirus elicits proasthmatic changes in airway responsiveness independently of viral infection. J Allergy Clin Immunol 108: 997–1004PubMedCrossRefGoogle Scholar
  142. 142.
    Moore PE, Cunningham G, Calder MM, DeMatteo AD, Jr., Peeples ME, Summar ML, Peebles RS, Jr. (2006) Respiratory syncytial virus infection reduces β2-adrenergic responses in human airway smooth muscle. Am J Respir Cell Mol Biol 35: 559–564PubMedCrossRefGoogle Scholar
  143. 143.
    Fernandes DJ, Bonacci J V, Stewart AG (2006) Extracellular matrix, integrins, and mesen-chymal cell function in the airways. Curr Drug Targets 7: 567–577PubMedCrossRefGoogle Scholar
  144. 144.
    Bergeron C, Boulet L-P (2006) Structural changes in airway diseases: characteristics, mechanisms, consequences, and pharmacologic modulation. Chest 129: 1068–1087PubMedCrossRefGoogle Scholar
  145. 145.
    Huang JUN, Olivenstein RON, Taha R, Hamid Q, Ludwig M (1999) Enhanced proteoglycan deposition in the airway wall of atopic asthmatics. Am J Respir Crit Care Med 160: 725–729PubMedGoogle Scholar
  146. 146.
    de Kluijver J, Schrumpf JA, Evertse CE, Sont JK, Roughley PJ, Rabe KF, Hiemstra PS, Mauad T, Sterk PJ (2005) Bronchial matrix and inflammation respond to inhaled steroids despite ongoing allergen exposure in asthma. Clin Exp Allergy 35: 1361–1369PubMedCrossRefGoogle Scholar
  147. 147.
    Pini L, Hamid Q, Shannon J, Lemelin L, Olivenstein R, Ernst P, Lemiere C, Martin JG, Ludwig MS (2007) Differences in proteoglycan deposition in the airways of moderate and severe asthmatics. Eur Respir J 29: 71–77PubMedCrossRefGoogle Scholar
  148. 148.
    Roche WR, Beasley R, Williams JH, Holgate ST (1989) Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1: 520–524PubMedCrossRefGoogle Scholar
  149. 149.
    Altraja A, Laitinen A, Virtanen I, Kämpe M, Simonsson BG, Karlsson SE, Håkansson L, Venge P, Sillastu H, Laitinen LA (1996) Expression of laminins in the airways in various types of asthmatic patients: a morphometric study. Am J Respir Cell Mol Biol 15: 482–488PubMedGoogle Scholar
  150. 150.
    Laitinen A, Altraja A, Kämpe M, Linden M, Virtanen I, Laitinen LA (1997) Tenascin is increased in airway basement membrane of asthmatics and decreased by an inhaled steroid. Am J Respir Crit Care Med 156: 951–958PubMedGoogle Scholar
  151. 151.
    Hoshino M, Nakamura Y, Sim J, Shimojo J, Isogai S (1998) Bronchial subepithelial fibrosis and expression of matrix metalloproteinase-9 in asthmatic airway inflammation. J Allergy Clin Immunol 102: 783–788PubMedCrossRefGoogle Scholar
  152. 152.
    Benayoun L, Letuve S, Druilhe A, Boczkowski J, Dombret M-C, Mechighel P, Megret J, Leseche GUY, Aubier M, Pretolani M (2001) Regulation of peroxisome proliferator-acti-vated receptor gamma expression in human asthmatic airways. Relationship with proliferation, apoptosis, and airway remodeling. Am J Respir Crit Care Med 164: 1487–1494PubMedGoogle Scholar
  153. 153.
    Chakir J, Shannon J, Molet S, Fukakusa M, Elias J, Laviolette M, Boulet L-P, Hamid Q (2003) Airway remodeling-associated mediators in moderate to severe asthma: Effect of steroids on TGF-β, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol 111: 1293–1298PubMedCrossRefGoogle Scholar
  154. 154.
    Amin K, Janson C, Seveus L, Miyazaki K, Virtanen I, Venge P (2005) Uncoordinated production of laminin-5 chains in airways epithelium of allergic asthmatics. Respir Res 6: 110PubMedCrossRefGoogle Scholar
  155. 155.
    Bousquet J, Chanez P, Lacoste JY, Enander I, Venge P, Peterson C, Ahlstedt S, Michel F, Godard P (1991) Indirect evidence of bronchial inflammation assessed by titration of inflammatory mediators in BAL fluid of patients with asthma. J Allergy Clin Immunol 88: 649–660PubMedCrossRefGoogle Scholar
  156. 156.
    Ohke M, Tada S, Nabe M, Matsuo K, Kataoka M, Harada M (2001) The role of fibronectin in bronchoalveolar lavage fluid of asthmatic patients. Acta Med Okayama 55: 83–89PubMedGoogle Scholar
  157. 157.
    Panettieri RA, Jr., Tan EML, Ciocca V, Luttmann MA, Leonard TB, Hay DWP (1998) Effects of LTD4 on human airway smooth muscle cell proliferation, matrix expression, and contraction in vitro: Differential sensitivity to cysteinyl leukotriene receptor antagonists. Am J Respir Cell Mol Biol 19: 453–461PubMedGoogle Scholar
  158. 158.
    Johnson PRA, Black JL, Carlin S, Ge Q, Underwood PA (2000) The production of extracellular matrix proteins by human passively sensitised airway smooth muscle cells in culture. The effect of Beclomethasone. Am J Respir Crit Care Med 162: 2145–2151Google Scholar
  159. 159.
    Coutts A, Chen G, Stephens NL, Hirst SJ, Douglas D, Eichholtz T, Khalil N (2001) Release of biologically active TGF-β from airway smooth muscle cell induces autocrine synthesis of collagen. Am J Physiol 280: L999–L1008Google Scholar
  160. 160.
    Potter-Perigo S, Baker C, Tsoi C, Braun KR, Isenhath S, Altman GM, Altman LC, Wight TN (2004) Regulation of proteoglycan synthesis by leukotriene D4 and epidermal growth factor in bronchial smooth muscle cells. Am J Respir Cell Mol Biol 30: 101–108PubMedCrossRefGoogle Scholar
  161. 161.
    Kazi AS, Lotfi S, Goncharova EA, Tliba O, Amrani Y, Krymskaya VP, Lazaar AL (2004) Vascular endothelial growth factor-induced secretion of fibronectin is ERK dependent. Am J Physiol Lung Cell Mol Physiol 286: L539–545PubMedCrossRefGoogle Scholar
  162. 162.
    Xie S, Sukkar MB, Issa R, Oltmanns U, Nicholson AG, Chung KF (2005) Regulation of TGF-β;1-induced connective tissue growth factor expression in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 288: L68–76PubMedCrossRefGoogle Scholar
  163. 163.
    Johnson PRA, Burgess JK, Ge Q, Poniris M, Boustany S, Twigg SM, Black JL (2006) Connective tissue growth factor induces extracellular matrix in asthmatic airway smooth muscle. Am J Respir Crit Care Med 173: 32–41PubMedCrossRefGoogle Scholar
  164. 164.
    Chen G, Grotendorst G, Eichholtz T, Khalil N (2003) GM-CSF increases airway smooth muscle cell connective tissue expression by inducing TGF-β receptors. Am J Physiol Lung Cell Mol Physiol 284: L548–L556PubMedGoogle Scholar
  165. 165.
    Johnson PRA, Burgess JK, Underwood PA, Au W, Poniris MH, Tamm M, Ge Q, Roth M, Black JL (2004) Extracellular matrix proteins modulate asthmatic airway smooth muscle cell proliferation via an autocrine mechanism. J Allergy Clin Immunol 113: 690–696PubMedCrossRefGoogle Scholar
  166. 166.
    Wen F-Q, Liu X, Manda W, Terasaki Y, Kobayashi T, Abe S, Fang Q, Ertl R, Manouilova L, Rennard SI (2003) TH2 Cytokine-enhanced and TGF-β-enhanced vascular endothelial growth factor production by cultured human airway smooth muscle cells is attenuated by IFN-y and corticosteroids. J Allergy Clin Immunol 111: 1307–1318PubMedCrossRefGoogle Scholar
  167. 167.
    Hirst SJ, Twort CHC, Lee TH (2000) Differential effects of extracellular matrix proteins on human airway smooth muscle cell proliferation and phenotype. Am J Respir Cell Mol Biol 23: 335–344PubMedGoogle Scholar
  168. 168.
    Parameswaran K, Radford K, Zuo J, Janssen LJ, O'Byrne PM, Cox PG (2004) Extracellular matrix regulates human airway smooth muscle cell migration. Eur Respir J 24: 545–551PubMedCrossRefGoogle Scholar
  169. 169.
    Nguyen TT-B, Ward JPT, Hirst SJ (2005) {beta}1-Integrins mediate enhancement of airway smooth muscle proliferation by collagen and fibronectin. Am J Respir Crit Care Med 171: 217–223PubMedCrossRefGoogle Scholar
  170. 170.
    Peng Q, Lai D, Nguyen TT-B, Chan V, Matsuda T, Hirst SJ (2005) Multiple β1 integrins mediate enhancement of human airway smooth muscle cytokine secretion by fibronectin and Type I collagen. J Immunol 174: 2258–2264PubMedGoogle Scholar
  171. 171.
    Dekkers BGJ, Schaafsma D, Nelemans SA, Zaagsma J, Meurs H (2007) Extracellular matrix proteins differentially regulate airway smooth muscle phenotype and function. Am J Physiol Lung Cell Mol Physiol 292: L1405–1413PubMedCrossRefGoogle Scholar
  172. 172.
    Tran T, Fernandes DJ, Schuliga M, Harris T, Landells L, Stewart AG (2005) Stimulus-dependent glucocorticoid-resistance of GM-CSF production in human cultured airway smooth muscle. Br J Pharmacol 145: 123–131PubMedCrossRefGoogle Scholar
  173. 173.
    Tran T, Ens-Blackie K, Rector ES, Stelmack GL, McNeill KD, Tarone G, Gerthoffer WT, Unruh H, Halayko AJ (2007) Laminin-binding integrin α7 is required for contractile phenotype expression by human airway myocytes. Am J Respir Cell Mol Biol 37: 668–680PubMedCrossRefGoogle Scholar
  174. 174.
    Freyer AM, Johnson SR, Hall IP (2001) Effects of growth factors and extracellular matrix on survival of human airway smooth muscle cells. Am J Respir Cell Mol Biol 25: 569–576PubMedGoogle Scholar
  175. 175.
    Lazaar AL, Plotnick MI, Kucich U, Crichton I, Lotfi S, Das SKP, Kane S, Rosenbloom J, Panettieri RA, Jr., Schechter NM, Pure E (2002) Mast cell chymase modifies cell-matrix interactions and inhibits mitogen-induced proliferation of human airway smooth muscle cells. J Immunol 169: 1014–1020PubMedGoogle Scholar
  176. 176.
    Oltmanns U, Sukkar MB, Xie S, John M, Chung KF (2005) Induction of human airway smooth muscle apoptosis by neutrophils and neutrophil elastase. Am J Respir Cell Mol Biol 32: 334–341PubMedCrossRefGoogle Scholar
  177. 177.
    Fahy J V, Kim KW, Liu J, Boushey HA (1995) Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J Allergy Clin Immunol 95: 843–852PubMedCrossRefGoogle Scholar
  178. 178.
    Jatakanon A, Uasuf C, Maziak W, Lim SAM, Chung KF, Barnes PJ (1999) Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med 160: 1532–1539PubMedGoogle Scholar
  179. 179.
    Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160: 1001–1008PubMedGoogle Scholar
  180. 180.
    Shapiro SD (2002) Proteinases in chronic obstructive pulmonary disease. Biochem Soc Trans 30: 98–102PubMedCrossRefGoogle Scholar
  181. 181.
    Elshaw SR, Henderson N, Knox AJ, Watson SA, Buttle DJ, Johnson SR (2004) Matrix met-alloproteinase expression and activity in human airway smooth muscle cells. Br J Pharmacol 142: 1318–1324PubMedCrossRefGoogle Scholar
  182. 182.
    Dahlen B, Shute J, Howarth P (1999) Immunohistochemical localisation of the matrix metal-loproteinases MMP-3 and MMP-9 within the airways in asthma. Thorax 54: 590–596PubMedCrossRefGoogle Scholar
  183. 183.
    Kao-Chih Liang C-WLW-NLC-CLC-BWS-FLC-MY (2007) Interleukin-1? induces MMP-9 expression via p42/p44 MAPK, p38 MAPK, JNK, and nuclear factor-?B signaling pathways in human tracheal smooth muscle cells. J Cell Physiol 211: 759–770PubMedCrossRefGoogle Scholar
  184. 184.
    Xie S, Issa R, Sukkar M, Oltmanns U, Bhavsar P, Papi A, Caramori G, Adcock I, Fan Chung KF (2005) Induction and regulation of matrix metalloproteinase-12 in human airway smooth muscle cells. Respir Res 6: 148PubMedCrossRefGoogle Scholar
  185. 185.
    Foley SC, Mogas AK, Olivenstein R, Fiset PO, Chakir J, Bourbeau J, Ernst P, Lemiere C, Martin JG, Hamid Q (2007) Increased expression of ADAM33 and ADAM8 with disease progression in asthma. J Allergy Clin Immunol 119: 863–871PubMedCrossRefGoogle Scholar
  186. 186.
    Lu D, Xie S, Sukkar MB, Lu X, Scully MF, Chung KF (2007) Inhibition of airway smooth muscle adhesion and migration by the disintegrin domain of ADAM-15. Am J Respir Cell Mol Biol 37: 494–500PubMedCrossRefGoogle Scholar
  187. 187.
    Johnson S, Knox A (1999) Autocrine production of matrix metalloproteinase-2 is required for human airway smooth muscle proliferation. Am J Physiol 277: L1109 – L1117PubMedGoogle Scholar
  188. 188.
    Henderson N, Markwick LJ, Elshaw SR, Freyer AM, Knox AJ, Johnson SR (2007) Collagen I and thrombin activate MMP-2 by MMP-14-dependent and -independent pathways: implications for airway smooth muscle migration. Am J Physiol Lung Cell Mol Physiol 292: L1030–1038PubMedCrossRefGoogle Scholar
  189. 189.
    Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-β1 release. Biochem J 322: 809–814PubMedGoogle Scholar
  190. 190.
    Fowlkes JL, Enghild JJ, Suzuki K, Nagase H (1994) Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J Biol Chem 269: 25742–25746PubMedGoogle Scholar
  191. 191.
    Noveral JP, Bhala A, Hintz RL, Grunstein MM, Cohen P (1994) Insulin-like growth factor axis in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 267: L761–765Google Scholar
  192. 192.
    Hasaneen NA, Zucker S, Cao J, Chiarelli C, Panettieri RA, Foda HD (2005) Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs. FASEB J 19: 1507–1509PubMedGoogle Scholar
  193. 193.
    Hirst SJ, Walker TR, Chilvers ER (2000) Phenotypic diversity and molecular mechanisms of airway smooth muscle proliferation in asthma. Eur Respir J 16: 159–177PubMedCrossRefGoogle Scholar
  194. 194.
    Ma X, Wang Y, Stephens NL (1998) Serum deprivation induces a unique hypercontractile phenotype of cultured smooth muscle cells. Am J Physiol 274: C1206–C1214PubMedGoogle Scholar
  195. 195.
    Moir LM, Leung S-Y, Eynott PR, McVicker CG, Ward JPT, Chung KF, Hirst SJ (2003) Repeated allergen inhalation induces phenotypic modulation of smooth muscle in bronchioles of sensitized rats. Am J Physiol Lung Cell Mol Physiol 284: L148–159PubMedGoogle Scholar
  196. 196.
    McVicker CG, Leung S-Y, Kanabar V, Moir LM, Mahn K, Chung KF, Hirst SJ (2007) Repeated allergen inhalation induces cytoskeletal remodeling in smooth muscle from rat bronchioles. Am J Respir Cell Mol Biol 36: 721–727PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Maria B. Sukkar
    • 1
  • Kian Fan Chung
    • 1
  1. 1.Airway Disease Section, National Heart and Lung InstituteImperial College LondonLondonUK

Personalised recommendations