Advertisement

Pathogen Recognition and New Insights into Innate Immunity

  • Joel N. Kline
Part of the Allergy Frontiers book series (ALLERGY, volume 2)

Abstract

Immune responses are based on differentiation between self and non-self; further distinctions then must be made regarding an intruder’s potential danger. While the adaptive immune system can elegantly and precisely identify and react to microbes, this is a slow and somewhat inefficient process. In contrast, innate immunity provides the “first responders” to a perceived alert, and does so in a rapid and proactive process. We have evolved an interactive network of pattern recognition receptors that are programmed to respond to conserved molecular elements found on pathogens. These receptors (including the family of Toll-like receptors, nucleotide-binding oligomerization domain proteins, and mannose receptors) are found on a wide range of cells but especially on those whose mobility and/or location puts them in frequent contact with the organisms that cross the epithelium. Their ligation can initiate inflammatory cascades that serve to mobilize cells, activate production of cytokine and chemokines, and promote release of inflammatory mediators.

Keywords

Allergy Clin Immunol Atopic Asthma Hygiene Hypothesis TLR4 Polymorphism Atopic Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CpG 7909: PF 3512676, PF-3512676. Drugs R D 7: 312–316, 2006.Google Scholar
  2. 2.
    Beasley R, Crane J, Lai C, and Pearce N. Prevalence and etiology of asthma. J Allergy Clin Immunol 105: S466–472, 2000.PubMedCrossRefGoogle Scholar
  3. 3.
    Berghofer B, Frommer T, Konig IR, Ziegler A, Chakraborty T, Bein G, and Hackstein H. Common human Toll-like receptor 9 polymorphisms and haplotypes: association with atopy and functional relevance. Clin Exp Allergy 35: 1147–1154, 2005.PubMedCrossRefGoogle Scholar
  4. 4.
    Bottcher M, Hmani-Aifa M, Lindstrom A, Jenmalm MC, Mai XM, Nilsson L, Zdolsek HA, Bjorksten B, Soderkvist P, and Vaarala O. A TLR4 polymorphism is associated with asthma and reduced lipopolysaccharide-induced interleukin-12(p70) responses in Swedish children. J Allergy Clin Immunol 114: 561–567, 2004.CrossRefGoogle Scholar
  5. 5.
    Braun-Fahrlander C, Riedler J, Herz U, Eder W, Waser M, Grize L, Maisch S, Carr D, Gerlach F, Bufe A, Lauener RP, Schierl R, Renz H, Nowak D, and von Mutius E. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 347: 869–877, 2002.PubMedCrossRefGoogle Scholar
  6. 6.
    Camporota L, Corkhill A, Long H, Lordan J, Stanciu L, Tuckwell N, Cross A, Stanford JL, Rook GA, Holgate ST, and Djukanovic R. The effects of Mycobacterium vaccae on allergen-induced airway responses in atopic asthma. Eur Respir J 21: 287–293, 2003.PubMedCrossRefGoogle Scholar
  7. 7.
    Chace JH, Hooker NA, Mildenstein KL, Krieg AM, and Cowdery JS. Bacterial DNA-induced NK cell IFN-gamma production is dependent on macrophage secretion of IL-12. Clin Immunol Immunopathol 84: 185–193, 1997.PubMedCrossRefGoogle Scholar
  8. 8.
    Chu RS, Targoni OS, Krieg AM, Lehmann PV, and Harding CV. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J Exp Med 186: 1623–1631, 1997.PubMedCrossRefGoogle Scholar
  9. 9.
    Cowdery JS, Chace JH, Yi AK, and Krieg AM. Bacterial DNA induces NK cells to produce IFN-gamma in vivo and increases the toxicity of lipopolysaccharides. J Immunol 156: 4570–4575, 1996.PubMedGoogle Scholar
  10. 10.
    Creticos PS, Schroeder JT, Hamilton RG, Balcer-Whaley SL, Khattignavong AP, Lindblad R, Li H, Coffman R, Seyfert V, Eiden JJ, and Broide D. Immunotherapy with a ragweed-Toll-like receptor 9 agonist vaccine for allergic rhinitis. N Engl J Med 355: 1445–1455, 2006.PubMedCrossRefGoogle Scholar
  11. 11.
    Eder W, Klimecki W, Yu L, von Mutius E, Riedler J, Braun-Fahrlander C, Nowak D, and Martinez FD. Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 113: 482–488, 2004.PubMedCrossRefGoogle Scholar
  12. 12.
    Fritz JH, Ferrero RL, Philpott DJ, and Girardin SE. Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7: 1250–1257, 2006.PubMedCrossRefGoogle Scholar
  13. 13.
    Gauvreau GM, Hessel EM, Boulet LP, Coffman RL, and O'Byrne P M. Immunostimulatory sequences regulate interferon-inducible genes but not allergic airway responses. Am J Respir Crit Care Med 174: 15–20, 2006.PubMedCrossRefGoogle Scholar
  14. 14.
    Gerhold K, Blumchen K, Bock A, Seib C, Stock P, Kallinich T, Lohning M, Wahn U, and Hamelmann E. Endotoxins prevent murine IgE production, T(H)2 immune responses, and development of airway eosinophilia but not airway hyperreactivity. J Allergy Clin Immunol 110: 110–116, 2002.PubMedCrossRefGoogle Scholar
  15. 15.
    Henry SP, Beattie G, Yeh G, Chappel A, Giclas P, Mortari A, Jagels MA, Kornbrust DJ, and Levin AA. Complement activation is responsible for acute toxicities in rhesus monkeys treated with a phosphorothioate oligodeoxynucleotide. International immunopharmacology 2: 1657–1666, 2002.PubMedCrossRefGoogle Scholar
  16. 16.
    Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N, and Taniguchi T. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434: 772–777, 2005.PubMedCrossRefGoogle Scholar
  17. 17.
    Jain VV, Businga TR, Kitagaki K, George CL, O'Shaughnessy PT, and Kline JN. Mucosal immunotherapy with CpG oligodeoxynucleotides reverses a murine model of chronic asthma induced by repeated antigen exposure. Am J Physiol Lung Cell Mol Physiol 285: L1137–1146, 2003.PubMedGoogle Scholar
  18. 18.
    Kawai T, and Akira S. Toll-like receptor downstream signaling. Arthritis Res Ther 7: 12–19, 2005.PubMedCrossRefGoogle Scholar
  19. 19.
    Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, and Akira S. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5: 1061–1068, 2004.PubMedCrossRefGoogle Scholar
  20. 20.
    Kline JN, Kitagaki K, Businga TR, and Jain VV. Treatment of established asthma in a murine model using CpG oligodeoxynucleotides. Am J Physiol Lung Cell Mol Physiol 283: L170–179, 2002.PubMedGoogle Scholar
  21. 21.
    Kline JN, Waldschmidt TJ, Businga TR, Lemish JE, Weinstock JV, Thorne PS, and Krieg AM. Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. J Immunol 160: 2555–2559, 1998.PubMedGoogle Scholar
  22. 22.
    Klinman DM, Yi AK, Beaucage SL, Conover J, and Krieg AM. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci USA 93: 2879–2883, 1996.PubMedCrossRefGoogle Scholar
  23. 23.
    Komlosi ZI, Pozsonyi E, Tabi T, Szoko E, Nagy A, Bartos B, Kozma GT, Tamasi L, Orosz M, Magyar P, and Losonczy G. Lipopolysaccharide exposure makes allergic airway inflammation and hyper-responsiveness less responsive to dexamethasone and inhibition of iNOS. Clin Exp Allergy 36: 951–959, 2006.Google Scholar
  24. 24.
    Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, and Klinman DM. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546–549, 1995.PubMedCrossRefGoogle Scholar
  25. 25.
    Lazarus R, Klimecki WT, Raby BA, Vercelli D, Palmer LJ, Kwiatkowski DJ, Silverman EK, Martinez F, and Weiss ST. Single-nucleotide polymorphisms in the Toll-like receptor 9 gene (TLR9): frequencies, pairwise linkage disequilibrium, and haplotypes in three U.S. ethnic groups and exploratory case-control disease association studies. Genomics 81: 85–91, 2003.PubMedCrossRefGoogle Scholar
  26. 26.
    Lazarus R, Raby BA, Lange C, Silverman EK, Kwiatkowski DJ, Vercelli D, Klimecki WJ, Martinez FD, and Weiss ST. Toll-like receptor 10 genetic variation is associated with asthma in two independent samples. Am J Respir Crit Care Med 170: 594–600, 2004.PubMedCrossRefGoogle Scholar
  27. 27.
    Levin AA. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta 1489: 69–84, 1999.PubMedGoogle Scholar
  28. 28.
    Medzhitov R, Preston-Hurlburt P, and Janeway CA, Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394–397, 1997.PubMedCrossRefGoogle Scholar
  29. 29.
    Monteith DK, Geary RS, Leeds JM, Johnston J, Monia BP, and Levin AA. Preclinical evaluation of the effects of a novel antisense compound targeting C-raf kinase in mice and monkeys. Toxicol Sci 46: 365–375, 1998.PubMedGoogle Scholar
  30. 30.
    Noguchi E, Nishimura F, Fukai H, Kim J, Ichikawa K, Shibasaki M, and Arinami T. An association study of asthma and total serum immunoglobin E levels for Toll-like receptor polymorphisms in a Japanese population. Clin Exp Allergy 34: 177–183, 2004.PubMedCrossRefGoogle Scholar
  31. 31.
    Pastva AM, Wright JR, and Williams KL. Immunomodulatory roles of surfactant proteins A and D: implications in lung disease. Proc Am Thorac Soc 4: 252–257, 2007.PubMedCrossRefGoogle Scholar
  32. 32.
    Prescott SL, Macaubas C, Holt BJ, Smallacombe TB, Loh R, Sly PD, and Holt PG. Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. J Immunol 160: 4730–4737, 1998.PubMedGoogle Scholar
  33. 33.
    Raby BA, Klimecki WT, Laprise C, Renaud Y, Faith J, Lemire M, Greenwood C, Weiland KM, Lange C, Palmer LJ, Lazarus R, Vercelli D, Kwiatkowski DJ, Silverman EK, Martinez FD, Hudson TJ, and Weiss ST. Polymorphisms in Toll-like receptor 4 are not associated with asthma or atopy-related phenotypes. Am J Respir Crit Care Med 166: 1449–1456, 2002.PubMedCrossRefGoogle Scholar
  34. 34.
    Reynolds C, Ozerovitch L, Wilsen R, Altmann D, and Boyton R. Toll-like receptors 2 and 4 and innate immunity in neutrophilic asthma and idiopathic bronchiectasis. Thorax 62: 279, 2007.PubMedGoogle Scholar
  35. 35.
    Riedler J, Braun-Fahrlander C, Eder W, Schreuer M, Waser M, Maisch S, Carr D, Schierl R, Nowak D, and von Mutius E. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 358: 1129–1133, 2001.PubMedCrossRefGoogle Scholar
  36. 36.
    Rook GA, and Brunet LR. Old friends for breakfast. Clin Exp Allergy 35: 841–842, 2005.PubMedCrossRefGoogle Scholar
  37. 37.
    Savov JD, Brass DM, Lawson BL, McElvania-Tekippe E, Walker JK, and Schwartz DA. Toll-like receptor 4 antagonist (E5564) prevents the chronic airway response to inhaled lipopolysaccharide. Am J Physiol Lung Cell Mol Physiol 289: L329–337, 2005.PubMedCrossRefGoogle Scholar
  38. 38.
    Shaheen SO, Aaby P, Hall AJ, Barker DJ, Heyes CB, Shiell AW, and Goudiaby A. Measles and atopy in Guinea-Bissau. Lancet 347: 1792–1796, 1996.PubMedCrossRefGoogle Scholar
  39. 39.
    Strachan DP. Hay fever, hygiene, and household size. BMJ 299: 1259–1260, 1989.PubMedCrossRefGoogle Scholar
  40. 40.
    Tauszig S, Jouanguy E, Hoffmann JA, and Imler JL. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc Natl Acad Sci USA 97: 10520–10525, 2000.PubMedCrossRefGoogle Scholar
  41. 41.
    Uematsu S, and Akira S. Toll-like receptors and innate immunity. J Mol Med (Berlin, Germany) 84: 712–725, 2006.Google Scholar
  42. 42.
    Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H, Takeshita F, Matsuda M, Coban C, Ishii KJ, Kawai T, Takeuchi O, and Akira S. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. J Exp Med 201: 915–923, 2005.PubMedCrossRefGoogle Scholar
  43. 43.
    von Mutius E, Martinez FD, Fritzsch C, Nicolai T, Reitmeir P, and Thiemann HH. Skin test reactivity and number of siblings. BMJ 308: 692–695, 1994.Google Scholar
  44. 44.
    Waser M, von Mutius E, Riedler J, Nowak D, Maisch S, Carr D, Eder W, Tebow G, Schierl R, Schreuer M, and Braun-Fahrlander C. Exposure to pets, and the association with hay fever, asthma, and atopic sensitization in rural children. Allergy 60: 177–184, 2005.PubMedCrossRefGoogle Scholar
  45. 45.
    Yang IA, Barton SJ, Rorke S, Cakebread JA, Keith TP, Clough JB, Holgate ST, and Holloway JW. Toll-like receptor 4 polymorphism and severity of atopy in asthmatics. Genes Immun 5: 41–45, 2004.PubMedCrossRefGoogle Scholar
  46. 46.
    Yang K, Puel A, Zhang S, Eidenschenk C, Ku CL, Casrouge A, Picard C, von Bernuth H, Senechal B, Plancoulaine S, Al-Hajjar S, Al-Ghonaium A, Marodi L, Davidson D, Speert D, Roifman C, Garty BZ, Ozinsky A, Barrat FJ, Coffman RL, Miller RL, Li X, Lebon P, Rodriguez-Gallego C, Chapel H, Geissmann F, Jouanguy E, and Casanova JL. Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/beta and -lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity 23: 465–478, 2005.PubMedCrossRefGoogle Scholar
  47. 47.
    Yazdanbakhsh M, Kremsner PG, and van Ree R. Allergy, parasites, and the hygiene hypothesis. Science 296: 490–494, 2002.PubMedCrossRefGoogle Scholar
  48. 48.
    Yazdanbakhsh M, van den Biggelaar A, and Maizels RM. Th2 responses without atopy: immunoregulation in chronic helminth infections and reduced allergic disease. Trends Immunol 22: 372–377, 2001.PubMedCrossRefGoogle Scholar
  49. 49.
    Yeo SJ, Gravis D, Yoon JG, and Yi AK. Myeloid differentiation factor 88-dependent transcriptional regulation of cyclooxygenase-2 expression by CpG DNA: role of NF-kappaB and p38. J Biol Chem 278: 22563–22573, 2003.PubMedCrossRefGoogle Scholar
  50. 50.
    Yeo SJ, Yoon JG, and Yi AK. Myeloid differentiation factor 88-dependent post-transcriptional regulation of cyclooxygenase-2 expression by CpG DNA: tumor necrosis factor-alpha receptor-associated factor 6, a diverging point in the Toll-like receptor 9-signaling. J Biol Chem 278: 40590–40600, 2003.PubMedCrossRefGoogle Scholar
  51. 51.
    Zuany-Amorim C, Sawicka E, Manlius C, Le Moine A, Brunet LR, Kemeny DM, Bowen G, Rook G, and Walker C. Suppression of airway eosinophilia by killed Mycobacterium vaccaeinduced allergen-specific regulatory T-cells. Nat Med 8: 625–629, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Joel N. Kline
    • 1
  1. 1.UI Asthma Center, Roy J. and Lucille A. Carver College of MedicineUniversity of IowaIowaUSA

Personalised recommendations