Expression and Function of Siglec-8 in Human Eosinophils, Basophils, and Mast Cells

  • Stephan von Gunten
  • Bruce S. Bochner
Part of the Allergy Frontiers book series (ALLERGY, volume 2)


Siglec-8, the eighth member of the sialic acid-binding, immunoglobulin [Ig]-like lectin family, was initially discovered as a cell surface protein selectively expressed on human eosinophils. It is now know to also be expressed by mast cells and basophils. Siglec-8 engagement with specific antibodies causes apoptosis via caspase and mitochondrial-dependent pathways. For mast cells, inhibition of mediator release, but no apoptosis, is observed. Siglec-F is the closest mouse paralog to Siglec-8, and both selectively bind the sulfated glycan 6’-sulfo-sialyl Lewis X. Antibodies to Siglec-F reduce blood and tissue eosinophil numbers in vivo. This suggests that Siglec-8 may be a useful future therapeutic target for allergic and other eosinophilic disorders.


Mast Cell Human Eosinophil Eosinophil Apoptosis Glycan Ligand Sulfate Galactose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bochner BS, Schleimer RP (2001) Mast cells, basophils, and eosinophils: distinct but overlapping pathways for recruitment. Immunol. Rev. 179:5–15.PubMedCrossRefGoogle Scholar
  2. 2.
    Simon HU, Blaser K (1995) Inhibition of programmed eosinophil death: a key pathogenic event for eosinophilia? Immunol. Today 16:53–55.PubMedCrossRefGoogle Scholar
  3. 3.
    Simon HU (2001) Regulation of eosinophil and neutrophil apoptosis — similarities and differences? Immunol. Rev. 179:156–162.PubMedCrossRefGoogle Scholar
  4. 4.
    Costa JJ, Weller PF, Galli SJ (1997) The cells of the allergic response: mast cells, basophils, and eosinophils. JAMA 278:1815–1822.PubMedCrossRefGoogle Scholar
  5. 5.
    Busse WW, Lemanske RF (2001) Asthma. N. Engl. J. Med. 344:350–362.PubMedCrossRefGoogle Scholar
  6. 6.
    Bochner BS (2004) Adhesion molecules as therapeutic targets. Immunol. Allergy Clin. N. Am. 24:615–630.CrossRefGoogle Scholar
  7. 7.
    Crocker PR (2002) Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling. Curr. Opin. Struct. Biol. 12:609–615.PubMedCrossRefGoogle Scholar
  8. 8.
    Crocker PR (2005) Siglecs in innate immunity. Curr. Opin. Pharmacol. 5:431–437.PubMedCrossRefGoogle Scholar
  9. 9.
    Varki A, Angata T (2006) Siglecs — the major subfamily of I-type lectins. Glycobiology 16:1R–27R.PubMedCrossRefGoogle Scholar
  10. 10.
    von Gunten S, Simon HU (2006) Sialic acid binding immunoglobulin-like lectins may regulate innate immune responses by modulating the life span of granulocytes. FASEB J. 20:601–605.CrossRefGoogle Scholar
  11. 11.
    Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7:255–266.PubMedCrossRefGoogle Scholar
  12. 12.
    Kikly KK, Bochner BS, Freeman SD, Tan KB, Gallagher KT, D'alessio KJ, Holmes SD, Abrahamson JA, Erickson-Miller CL, Murdock PR, Tachimoto H, Schleimer RP, White JR (2000) Identification of SAF-2, a novel siglec expressed on eosinophils, mast cells, and basophils. J. Allergy Clin. Immunol. 105:1093–1100.PubMedCrossRefGoogle Scholar
  13. 13.
    Guo JP, Nutku E, Yokoi H, Schnaar R, Zimmermann N, Bochner BS (2007) Siglec-8 and Siglec-F: inhibitory receptors on eosinophils and mast cells. Allergy Clin. Immunol. Int. J. World Allergy Org. 19:54–59.CrossRefGoogle Scholar
  14. 14.
    Floyd H, Ni J, Cornish AL, Zeng Z, Liu D, Carter KC, Steel J, Crocker PR (2000) Siglec-8. A novel eosinophil-specific member of the immunoglobulin superfamily. J. Biol. Chem. 275:861–866.Google Scholar
  15. 15.
    Aizawa H, Plitt J, Bochner BS (2002) Human eosinophils express two Siglec-8 splice variants. J. Allergy Clin. Immunol. 109:176.PubMedCrossRefGoogle Scholar
  16. 16.
    Aizawa H, Zimmermann N, Carrigan PE, Lee JJ, Rothenberg ME, Bochner BS (2003) Molecular analysis of human Siglec-8 orthologs relevant to mouse eosinophils: identification of mouse orthologs of Siglec-5 (mSiglec-F) and Siglec-10 (mSiglec-G). Genomics 82:521–530.PubMedCrossRefGoogle Scholar
  17. 17.
    Liu SM, Xavier R, Good KL, Chtanova T, Newton R, Sisavanh M, Zimmer S, Deng C, Silva DG, Frost MJ, Tangye SG, Rolph MS, Mackay CR (2006) Immune cell transcriptome datasets reveal novel leukocyte subset-specific genes and genes associated with allergic processes. J. Allergy Clin. Immunol. 118:496–503.PubMedCrossRefGoogle Scholar
  18. 18.
    Cambier JC (1997) Inhibitory receptors abound. Proc. Natl. Acad. Sci. USA 94:5993–5995.PubMedCrossRefGoogle Scholar
  19. 19.
    Ravetch J V, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89.PubMedCrossRefGoogle Scholar
  20. 20.
    Vely F, Vivier E (1997) Commentary: conservation of structural features reveals the existence of a large family of inhibitory cell surface receptors and noninhibitory/activatory counterparts. J. Immunol. 159:2075–2077.PubMedGoogle Scholar
  21. 21.
    Katz HR (2002) Inhibitory receptors and allergy. Curr. Opin. Immunol. 14:698–704.PubMedCrossRefGoogle Scholar
  22. 22.
    Daigle I, Yousefi S, Colonna M, Green DR, Simon HU (2002) Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils. Nat. Med. 8:61–67.PubMedCrossRefGoogle Scholar
  23. 23.
    Yousefi S, Simon HU (2003) SHP-1: a regulator of neutrophil apoptosis. Semin. Immunol. 15:195–199.PubMedCrossRefGoogle Scholar
  24. 24.
    Falco M, Biassoni R, Bottino C, Vitale M, Sivori S, Augugliaro R, Moretta L, Moretta A (1999) Identification and molecular cloning of p75/AIRM1, a novel member of the siaload-hesin family that functions as an inhibitory receptor in human natural killer cells. J. Exp. Med. 190:793–802.PubMedCrossRefGoogle Scholar
  25. 25.
    Taylor VC, Buckley CD, Douglas M, Cody AJ, Simmons DL, Freeman SD (1999) The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J. Biol. Chem. 274:11505–11512.PubMedCrossRefGoogle Scholar
  26. 26.
    Ulyanova T, Blasioli J, Woodford-Thomas TA, Thomas ML (1999) The sialoadhesin CD33 is a myeloid-specific inhibitory receptor. Eur. J. Immunol. 29:3440–3449.PubMedCrossRefGoogle Scholar
  27. 27.
    Ulyanova T, Shah DD, Thomas ML (2001) Molecular cloning of MIS, a myeloid inhibitory siglec, that binds protein-tyrosine phosphatases SHP-1 and SHP-2. J. Biol. Chem. 276:14451–14458.PubMedGoogle Scholar
  28. 28.
    Paul SP, Taylor LS, Stansbury EK, McVicar DW (2000) Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood 96:483–490.PubMedGoogle Scholar
  29. 29.
    Whitney G, Wang S, Chang H, Cheng KY, Lu P, Zhou XD, Yang WP, McKinnon M, Longphre M (2001) A new siglec family member, Siglec-10, is expressed in cells of the immune system and has signaling properties similar to CD33. Eur. J. Biochem. 268:6083–6096.PubMedCrossRefGoogle Scholar
  30. 30.
    Yu Z, Lai CM, Maoui M, Banville D, Shen SH (2001) Identification and characterization of S2V, a novel putative Siglec that contains two V set Ig-like domains and recruits protein-tyrosine phosphatases SHPs. J. Biol. Chem. 276:23816–23824.PubMedCrossRefGoogle Scholar
  31. 31.
    Angata T, Kerr SC, Greaves DR, Varki NM, Crocker PR, Varki A (2002) Cloning and Characterization of Human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J. Biol. Chem. 277:24466–24474.Google Scholar
  32. 32.
    Kitzig F, Martinez-Barriocanal A, Lopez-Botet M, Sayos J (2002) Cloning of two new splice variants of Siglec-10 and mapping of the interaction between Siglec-10 and SHP-1. Biochem. Biophys. Res. Commun. 296:355–362.PubMedCrossRefGoogle Scholar
  33. 33.
    Ikehara Y, Ikehara SK, Paulson JC (2004) Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9. J. Biol. Chem. 279:43117–43125.PubMedCrossRefGoogle Scholar
  34. 34.
    Yu Z, Maoui M, Wu L, Banville D, Shen S (2001) mSiglec-E, a novel mouse CD33-related siglec (sialic acid-binding immunoglobulin-like lectin) that recruits Src homology 2 (SH2)-domain-containing protein tyrosine phosphatases SHP-1 and SHP-2. Biochem. J. 353:483–492.PubMedCrossRefGoogle Scholar
  35. 35.
    Avril T, Floyd H, Lopez F, Vivier E, Crocker PR (2004) The membrane-proximal immu-noreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells. J. Immunol. 173:6841–6849.PubMedGoogle Scholar
  36. 36.
    Chen J, McLean PA, Neel BG, Okunade G, Shull GE, Wortis HH (2004) CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nat. Immunol. 5:651–657.PubMedCrossRefGoogle Scholar
  37. 37.
    Yohannan J, Wienands J, Coggeshall KM, Justement LB (1999) Analysis of tyrosine phosphorylation-dependent interactions between stimulatory effector proteins and the B cell co-receptor CD22. J. Biol. Chem. 274:18769–18776.PubMedCrossRefGoogle Scholar
  38. 38.
    Poe JC, Fujimoto M, Jansen PJ, Miller AS, Tedder TF (2000) CD22 Forms a Quaternary Complex with SHIP, Grb2, and Shc. A pathway for regulation of B lymphocyte antigen receptor-induced calcium flux. J. Biol. Chem. 275:17420–17427.Google Scholar
  39. 39.
    Otipoby KL, Draves KE, Clark EA (2001) CD22 regulates B cell receptor-mediated signals via two domains that independently recruit Grb2 and SHP-1. J. Biol. Chem. 276:44315–44322.PubMedCrossRefGoogle Scholar
  40. 40.
    Kursula P, Lehto VP, Heape AM (2000) S100beta inhibits the phosphorylation of the L-MAG cytoplasmic domain by PKA. Brain Res. Mol. Brain Res. 76:407–410.PubMedCrossRefGoogle Scholar
  41. 41.
    Jaramillo ML, Afar DE, Almazan G, Bell JC (1994) Identification of tyrosine 620 as the major phosphorylation site of myelin-associated glycoprotein and its implication in interacting with signaling molecules. J. Biol. Chem. 269:27240–27245.PubMedGoogle Scholar
  42. 42.
    Law CL, Sidorenko SP, Chandran KA, Zhao Z, Shen SH, Fischer EH, Clark EA (1996) CD22 associates with protein tyrosine phosphatase 1C, Syk, and phospholipase C-gamma(1) upon B cell activation. J. Exp. Med. 183:547–560.PubMedCrossRefGoogle Scholar
  43. 43.
    Umemori H, Satot S, Yagi T, Aizawal S, Yamamoto T (1994) Initial events of myelination involve Fyn tyrosine kinase signalling. Nature 367:572–576.PubMedCrossRefGoogle Scholar
  44. 44.
    Nguyen DH, Hurtado-Ziola N, Gagneux P, Varki A (2006) Loss of Siglec expression on T lymphocytes during human evolution. Proc. Natl. Acad. Sci. USA 103:7765–7770.PubMedCrossRefGoogle Scholar
  45. 45.
    Blixt O, Collins BE, van den Nieuwenhof IM, Crocker PR, Paulson JC (2003) Sialoside specificity of the Siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J. Biol. Chem. 278:31007–31019.PubMedCrossRefGoogle Scholar
  46. 46.
    Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I, Burton DR, Wilson IA, Cummings R, Bovin N, Wong CH, Paulson JC (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. USA 101:17033–17038.PubMedCrossRefGoogle Scholar
  47. 47.
    Bochner BS, Alvarez RA, Mehta P, Bovin NV, Blixt O, White JR, Schnaar RL (2005) Glycan array screening reveals a candidate ligand for Siglec-8. J. Biol. Chem. 280:4307–4312.PubMedCrossRefGoogle Scholar
  48. 48.
    Tateno H, Crocker PR, Paulson JC (2005) Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6'-sulfo-sialyl Lewis X as a preferred glycan ligand. Glycobiology 15:1125–1135.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang M, Angata T, Cho J Y, Miller M, Broide DH, Varki A (2007) Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood 109:4280–4287.PubMedCrossRefGoogle Scholar
  50. 50.
    Zimmermann N, McBride ML, Yamada Y, Hudson SA, Jones C, Cromie KD, Crocker PR, Rothenberg ME, Bochner BS (2008) Siglec-F antibody administration to mice selectively reduces blood and tissue eosinophils. Allergy 63:1156–1163.PubMedCrossRefGoogle Scholar
  51. 51.
    Voehringer D, van Rooijen N, Locksley RM (2007) Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages. J. Leukoc. Biol. 81:1434–1444.PubMedCrossRefGoogle Scholar
  52. 52.
    Kearley J, Jones C, McMillan SJ, Cromie K, Crocker PR, Lloyd CM (2007) Anti-Siglec-F antibody treatment during allergen-induced airway inflammation reduces eosinophil numbers but has no effect on airway hyperreactivity in vivo. Am. J. Respir. Crit. Care Med. 175:A690.Google Scholar
  53. 53.
    Nutku E, Aizawa H, Hudson SA, Bochner BS (2003) Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 101:5014–5020.PubMedCrossRefGoogle Scholar
  54. 54.
    Nutku E, Hudson SA, Bochner BS (2005) Mechanism of Siglec-8-induced human eosinophil apop-tosis: role of caspases and mitochondrial injury. Biochem. Biophys. Res. Commun. 336:918–924.PubMedCrossRefGoogle Scholar
  55. 55.
    Nutku E, Hudson SA, Bochner BS (2005) Mechanism of Siglec-8-induced human eosinophil apoptosis: role of caspases and mitochondrial injury. Biochem. Biophys. Res. Commun. 336:918–924.PubMedCrossRefGoogle Scholar
  56. 56.
    Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere J.L., Petit PX, Kroemer G (1995) Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med. 181:1661–1672.PubMedCrossRefGoogle Scholar
  57. 57.
    Sugioka K, Nakano M, Totsune-Nakano H, Minakami H, Tero-Kubota S, Ikegami Y (1988) Mechanism of O2-generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems. Biochem. Biophys. Acta 936:377–385.PubMedCrossRefGoogle Scholar
  58. 58.
    Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191:421–427.PubMedGoogle Scholar
  59. 59.
    Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 5:415–418.PubMedCrossRefGoogle Scholar
  60. 60.
    von Gunten S, Yousefi S, Seitz M, Jakob SM, Schaffner T, Seger R, Takala J, Villiger PM, Simon HU (2005) Siglec-9 transduces apoptotic and nonapoptotic death signals into neu-trophils depending on the proinflammatory cytokine environment. Blood 106:1423–1431.CrossRefGoogle Scholar
  61. 61.
    von Gunten S, Simon HU (2007) Autophagic-like cell death in neutrophils induced by autoan-tibodies. Autophagy. 3:67–68.Google Scholar
  62. 62.
    von Gunten S, Schaub A, Vogel M, Stadler BM, Miescher S, Simon HU (2006) Immunologic and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin preparations. Blood 108:4255–4259.CrossRefGoogle Scholar
  63. 63.
    von Gunten S, Vogel M, Schaub A, Stadler BM, Miescher S, Crocker PR, Simon HU (2007) Intravenous immunoglobulin preparations contain anti-Siglec-8 autoantibodies. J. Allergy Clin. Immunol. 119:1005–1011.CrossRefGoogle Scholar
  64. 64.
    Altznauer F, von Gunten S, Spath P, Simon HU (2003) Concurrent presence of agonistic and antagonistic anti-CD95 autoantibodies in intravenous Ig preparations. J. Allergy Clin. Immunol. 112:1185–1190.PubMedCrossRefGoogle Scholar
  65. 65.
    Prasad NKA, Papoff G, Zeuner A, Bonnin E, Kazatchkine MD, Ruberti G, Kaveri SV (1998) Therapeutic preparations of normal polyspecific IgG (IVIg) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of action of IVIg involving the Fas apoptotic pathway. J. Immunol. 161:3781–3790.PubMedGoogle Scholar
  66. 66.
    Sooryanarayana, Prasad N, Bonnin E, Pashov A, Ben Jilani K, Ameisen JC, Kazatchkine MD, Kaveri SV (1999) Phosphorylation of Bcl-2 and mitochondrial changes are associated with apoptosis of lymphoblastoid cells induced by normal immunoglobulin G. Biochem. Biophys. Res. Commun. 264:896–901.CrossRefGoogle Scholar
  67. 67.
    Viard I, Wehrli P, Bullani R, Schneider P, Holler N, Salomon D, Hunziker T, Saurat JH, Tschopp J, French LE (1998) Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 282:490–493.PubMedCrossRefGoogle Scholar
  68. 68.
    Vassina EM, Yousefi S, Simon D, Zwicky C, Conus S, Simon HU (2006) cIAP-2 and survivin contribute to cytokine-mediated delayed eosinophil apoptosis. Eur. J. Immunol. 36:1975–1984.PubMedCrossRefGoogle Scholar
  69. 69.
    Plötz SG, Simon HU, Darsow U, Simon D, Vassina E, Yousefi S, Hein R, Smith T, Behrendt H, Ring J (2003) Use of an anti-Interleukin-5 antibody in the hypereosinophilic syndrome with eosinophilic dermatitis. N. Engl. J. Med. 349:2334–2339.PubMedCrossRefGoogle Scholar
  70. 70.
    Takigawa N, Kawata N, Shibayama T, Tada A, Kimura G, Munemasa M, Soda R, Takahashi K (2005) Successful treatment of a patient with severe Churg-Strauss syndrome by a combination of pulse corticosteroids, pulse cyclophosphamide, and high-dose intravenous immu-noglobulin. J. Asthma 42:639–641.PubMedCrossRefGoogle Scholar
  71. 71.
    Tsurikisawa N, Taniguchi M, Saito H, Himeno H, Ishibashi A, Suzuki S, Albert ML (2004) Treatment of Churg-Strauss syndrome with high-dose intravenous immunoglobulin. Ann. Allergy Asthma Immunol. 92:80–87.PubMedCrossRefGoogle Scholar
  72. 72.
    O'Donnell BF, Barr RM, Black AK, Francis DM, Kermani F, Niimi N, Barlow RJ, Winkelmann RK, Greaves MW (1998) Intravenous immunoglobulin in autoimmune chronic urticaria. Br. J. Dermatol. 138:101–106.PubMedCrossRefGoogle Scholar
  73. 73.
    Orange JS, Hossny EM, Weiler CR, Ballow M, Berger M, Bonilla FA, Buckley R, Chinen J, El-Gamal Y, Mazer BD, Nelson J, Patel DD, Secord E, Sorensen RU, Wasserman RL, Cunningham-Rundles C (2006) Use of intravenous immunoglobulin in human disease: A review of evidence by members of the Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. J. Allergy Clin. Immunol. 117:S525–S553.PubMedCrossRefGoogle Scholar
  74. 74.
    Jolles S, Hughes J (2006) Use of IGIV in the treatment of atopic dermatitis, urticaria, scleromyxedema, pyoderma gangrenosum, psoriasis, and pretibial myxedema. Int. Immunopharmacol. 6:579–591.PubMedCrossRefGoogle Scholar
  75. 75.
    Rabinovitch N, Gelfand E, Leung D (1999) The role of immunoglobulin therapy in allergic diseases. Allergy 54:662–668.PubMedCrossRefGoogle Scholar
  76. 76.
    Yokoi H, Myers A, Matsumoto K, Crocker PR, Saito H, Bochner BS (2006) Alteration and acquisition of Siglecs during in vitro maturation of CD34 + progenitors into human mast cells. Allergy 61:769–776.PubMedCrossRefGoogle Scholar
  77. 77.
    Yokoi H, Choi OH, Hubbard W, Lee H-S, Canning BJ, Lee HH, Ryu S-D, Bickel CA, Hudson SA, MacGlashan, Jr. DW, Bochner BS (2008) Inhibition of FcεRI-dependent mediator release and calcium flux from human mast cells by Siglec-8 engagement. J Allergy Clin Immunol 121:499–505.PubMedCrossRefGoogle Scholar
  78. 78.
    Nutku E, Aizawa H, Tachimoto H, Hudson SA, Bochner BS (2004) Expression and function of Siglec-8 isoforms in human eosinophils, basophils and mast cells. In: Bienenstock J, Ring J, Togias, AG (eds) Allergy Frontiers and Futures, Proceedings of the 24th Symposium of the Collegium Internationale Allergologicum. Hogrefe and Huber, Cambridge, MA, pp 130–132.Google Scholar
  79. 79.
    Guo JP, Myers AC, Choi O, Lee HS, Zhu Z, Hudson SA, Brummet M, Bovin NV, Crocker PR, Bochner BS (2007) Ligands for Siglec-8 and Siglec-F: binding characteristics and tissue distribution. J. Allergy Clin. Immunol. 119:S299.CrossRefGoogle Scholar
  80. 80.
    Oh SY, Zheng T, Bailey ML, Barber DL, Schroeder JT, Kim YK, Zhu Z (2007) Src homology 2 domain-containing inositol 5-phosphatase 1 deficiency leads to a spontaneous allergic inflammation in the murine lung. J. Allergy Clin. Immunol. 119:123–131.PubMedCrossRefGoogle Scholar
  81. 81.
    Kamata T, Yamashita M, Kimura M, Murata K, Inami M, Shimizu C, Sugaya K, Wang CR, Taniguchi M, Nakayama T (2003) src homology 2 domain-containing tyrosine phos-phatase SHP-1 controls the development of allergic airway inflammation. J. Clin. Invest. 111:109–119.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stephan von Gunten
    • 1
  • Bruce S. Bochner
    • 1
  1. 1.Division of Allergy & Clinical ImmunologyJohns Hopkins Asthma & Allergy CenterBaltimoreUSA

Personalised recommendations