Advertisement

Neutrophils and Their Mediators in Asthma and Allergic Disease

  • Kian Fan Chung
Part of the Allergy Frontiers book series (ALLERGY, volume 2)

Keywords

Allergic Disease Airway Smooth Muscle Allergy Clin Immunol Respir Crit Neutrophil Elastase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lopuhaa CE, Out TA, Jansen HM, Aalberse RC, van der Zee JS. Allergen-induced bronchial inflammation in house dust mite-allergic patients with or without asthma. Clin Exp Allergy 2002; 32:1720–1727.PubMedCrossRefGoogle Scholar
  2. 2.
    Nocker RE, Out TA, Weller FR, Mul EP, Jansen HM, van der Zee JS. Influx of neutrophils into the airway lumen at 4 h after segmental allergen challenge in asthma. Int Arch Allergy Immunol 1999; 119:45–53.PubMedCrossRefGoogle Scholar
  3. 3.
    Teran LM, CARROLL M, Frew AJ, Montefort S, Lau LC, Davies DE et al. Neutrophil influx and interleukin-8 release after segmental allergen or saline challenge in asthmatics. Int Arch Allergy Immunol 1995; 107:374–375.PubMedGoogle Scholar
  4. 4.
    Torrego A, Hew M, Oates T, Sukkar M, Fan CK. Expression and activation of TGF-{beta} isoforms in acute allergen-induced remodelling in asthma. Thorax 2007; 62:307–313.PubMedCrossRefGoogle Scholar
  5. 5.
    Fransson M, Benson M, Wennergren G, Cardell LO. A role for neutrophils in intermittent allergic rhinitis. Acta Otolaryngol 2004; 124:616–620.PubMedCrossRefGoogle Scholar
  6. 6.
    Miadonna A, Milazzo N, Gibelli S, Salmaso C, Lorini M, Tedeschi A. Nasal response to a single antigen challenge in patients with allergic rhinitis —inflammatory cell recruitment persists up to 48 hours. Clin Exp Allergy 1999; 29:941–949.PubMedCrossRefGoogle Scholar
  7. 7.
    Gibson PG, Simpson JL, Saltos N. Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 2001; 119:1329–1336.PubMedCrossRefGoogle Scholar
  8. 8.
    Simpson JL, Scott R, Boyle MJ, Gibson PG. Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology 2006; 11:54–61.PubMedCrossRefGoogle Scholar
  9. 9.
    Gibson PG, Norzila MZ, Fakes K, Simpson J, Henry RL. Pattern of airway inflammation and its determinants in children with acute severe asthma. Pediatr Pulmonol 1999; 28:261–270.PubMedCrossRefGoogle Scholar
  10. 10.
    Barbato A, Panizzolo C, Gheno M, Sainati L, Favero E, Faggian D et al. Bronchoalveolar lavage in asthmatic children: evidence of neutrophil activation in mild-to-moderate persistent asthma. Pediatr Allergy Immunol 2001; 12:73–77.PubMedCrossRefGoogle Scholar
  11. 11.
    Jatakanon A, Uasuf C, Maziak W, Lim S, Chung KF, Barnes PJ. Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med 1999; 160:1532–1539.PubMedGoogle Scholar
  12. 12.
    Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 1999; 160:1001–1008.PubMedGoogle Scholar
  13. 13.
    Hamilton LM, Torres-Lozano C, Puddicombe SM, Richter A, Kimber I, Dearman RJ et al. The role of the epidermal growth factor receptor in sustaining neutrophil inflammation in severe asthma. Clin Exp Allergy 2003; 33:233–240.PubMedCrossRefGoogle Scholar
  14. 14.
    Maneechotesuwan K, Essilfie-Quaye S, Kharitonov S, Adcock I, Barnes P. Loss of control of asthma following inhaled corticosteroid withdrawal is associated with increased sputum inteleukin-8 and neutrophils. Chest 2007; 132:98–105.PubMedCrossRefGoogle Scholar
  15. 15.
    Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 2002; 360:1715–1721.PubMedCrossRefGoogle Scholar
  16. 16.
    de Blic J, Tillie-Leblond I, Tonnel AB, Jaubert F, Scheinmann P, Gosset P. Difficult asthma in children: an analysis of airway inflammation. J Allergy Clin Immunol 2004; 113:94–100.PubMedCrossRefGoogle Scholar
  17. 17.
    Fahy JV, Kim KW, Liu J, Boushey HA. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J Allergy Clin Immunol 1995; 95:843–852.PubMedCrossRefGoogle Scholar
  18. 18.
    Norzila MZ, Fakes K, Henry RL, Simpson J, Gibson PG. Interleukin-8 secretion and neutrophil recruitment accompanies induced sputum eosinophil activation in children with acute asthma. Am J Respir Crit Care Med 2000; 161:769–774.PubMedGoogle Scholar
  19. 19.
    Lamblin C, Gosset P, Tillie-Leblond I, Saulnier F, Marquette CH, Wallaert B et al. Bronchial neutrophilia in patients with noninfectious status asthmaticus. Am J Respir Crit Care Med 1998; 157:394–402.PubMedGoogle Scholar
  20. 20.
    Tonnel AB, Gosset P, Tillie-Leblond I. Characteristics of the Inflammatory response in bronchial lavage fluids from patients with status asthmaticus. Int Arch Allergy Immunol 2001; 124:267–271.PubMedCrossRefGoogle Scholar
  21. 21.
    Sur S, Crotty TB, Kephart GM, Hyma BA, Colby TV, Reed CE et al. Sudden-onset fatal asthma: A distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa? Am Rev Resp Dis 1993; 148:713–719.PubMedGoogle Scholar
  22. 22.
    Jarjour NN, Gern JE, Kelly EA, Swenson CA, Dick CR, Busse WW. The effect of an experimental rhinovirus 16 infection on bronchial lavage neutrophils. J Allergy Clin Immunol 2000; 105:1169–1177.PubMedCrossRefGoogle Scholar
  23. 23.
    Vagaggini B, Carnevali S, Macchioni P, Taccola M, Fornai E, Bacci E et al. Airway inflammatory response to ozone in subjects with different asthma severity. Eur Respir J 1999; 13:274–280.PubMedCrossRefGoogle Scholar
  24. 24.
    Stenfors N, Nordenhall C, Salvi SS, Mudway I, Soderberg M, Blomberg A et al. Different airway inflammatory responses in asthmatic and healthy humans exposed to diesel. Eur Respir J 2004; 23:82–86.PubMedCrossRefGoogle Scholar
  25. 25.
    Teramoto S, Shu CY, Ouchi Y, Fukuchi Y. Increased spontaneous production and generation of superoxide anion by blood neutrophils in patients with asthma. J Asthma 1996; 33:149–155.PubMedCrossRefGoogle Scholar
  26. 26.
    Asman B, Strand V, Bylin G, Bergstrom K. Peripheral neutrophils after allergic asthmatic reactions. Int J Clin Lab Res 1997; 27:185–188.PubMedCrossRefGoogle Scholar
  27. 27.
    Nordman SA, Nyberg PW. Whole blood chemiluminescence as a systemic inflammatory parameter in asthma. J Allergy Clin Immunol 1994; 94:853–860.PubMedCrossRefGoogle Scholar
  28. 28.
    Styrt B, Rocklin RE, Klempner MS. Characterization of the neutrophil respiratory burst in atopy. J Allergy Clin Immunol 1988; 81:20–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Monteseirin J, Bonilla I, Camacho J, Conde J, Sobrino F. Elevated secretion of myeloperoxidase by neutrophils from asthmatic patients: the effect of immunotherapy. J Allergy Clin Immunol 2001; 107:623–626.PubMedCrossRefGoogle Scholar
  30. 30.
    Monteseirin J, Camacho MJ, Montano R, Llamas E, Conde M, Carballo M et al. Enhancement of Antigen-specific functional responses by neutrophils from allergic patients. J Exp Med 1996; 183:2571–2579.PubMedCrossRefGoogle Scholar
  31. 31.
    Monteseirin J, Bonilla I, Camacho MJ, Conde J, Sobrino F. IgE-dependent release of myeloperoxidase by neutrophils from allergic patients. Clin Exp Allergy 2001; 31:889–892.PubMedCrossRefGoogle Scholar
  32. 32.
    Monteseirin J, Chacon P, Vega A, Sanchez-Monteseirin H, Asturias JA, Martinez A et al. L-selectin expression on neutrophils from allergic patients. Clin Exp Allergy 2005; 35:1204–1213.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang D, Smitz J, Derde MP, Clement P. Concentrations of myeloperoxidase in nasal secretions of atopic patients after nasal allergen challenge and during natural allergen exposure. Int Arch Allergy Immunol 1996; 110:85–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Monteseirin J, Fernandez-Pineda I, Chacon P, Vega A, Bonilla I, Camacho MJ et al. Myeloperoxidase release after allergen-specific conjunctival challenge. J Asthma 2004; 41:639–643.PubMedCrossRefGoogle Scholar
  35. 35.
    Gounni AS, Lamkhioued B, Koussih L, Ra C, Renzi PM, Hamid Q. Human neutrophils express the high-affinity receptor for immunoglobulin E (Fc epsilon RI): role in asthma. FASEB J 2001; 15:940–949.PubMedCrossRefGoogle Scholar
  36. 36.
    Saffar AS, Alphonse MP, Shan L, Hayglass KT, Simons FE, Gounni AS. IgE modulates neutrophil survival in asthma: role of mitochondrial pathway. J Immunol 2007; 178:2535–2541.PubMedGoogle Scholar
  37. 37.
    Simpson JL, Grissell TV, Douwes J, Scott RJ, Boyle MJ, Gibson PG. Innate immune activation in neutrophilic asthma and bronchiectasis. Thorax 2007; 62:211–218.PubMedCrossRefGoogle Scholar
  38. 38.
    Mann BS, Chung KF. Blood neutrophil activation markers in severe asthma: lack of inhibition by prednisolone therapy. Respir Res. 2006; 7:59.PubMedCrossRefGoogle Scholar
  39. 39.
    Cundall M, Sun Y, Miranda C, Trudeau JB, Barnes S, Wenzel SE. Neutrophil-derived matrix metalloproteinase-9 is increased in severe asthma and poorly inhibited by glucocorticoids. J Allergy Clin Immunol 2003; 112:1064–1071.PubMedCrossRefGoogle Scholar
  40. 40.
    Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 2000; 80:617–653.PubMedGoogle Scholar
  41. 41.
    Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am.J Physiol Lung Cell Mol Physiol 2003; 284:L566–L577.PubMedGoogle Scholar
  42. 42.
    Govindaraju V, Michoud MC, Al Chalabi M, Ferraro P, Powell WS, Martin JG. Interleukin-8: novel roles in human airway smooth muscle cell contraction and migration. Am J Physiol Cell Physiol 2006; 291:C957–C965.PubMedCrossRefGoogle Scholar
  43. 43.
    Lee E, Lindo T, Jackson N, Meng-Choong L, Reynolds P, Hill A et al. Reversal of human neutrophil survival by leukotriene B(4) receptor blockade and 5-lipoxygenase and 5-lipoxygenase activating protein inhibitors. Am J Respir Crit Care Med 1999; 160:2079–2085.PubMedGoogle Scholar
  44. 44.
    Kostikas K, Gaga M, Papatheodorou G, Karamanis T, Orphanidou D, Loukides S. Leukotriene B4 in exhaled breath condensate and sputum supernatant in patients with COPD and asthma. Chest 2005; 127:1553–1559.PubMedCrossRefGoogle Scholar
  45. 45.
    Csoma Z, Kharitonov SA, Balint B, Bush A, Wilson NM, Barnes PJ. Increased leukotrienes in exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med 2002; 166:1345–1349.PubMedCrossRefGoogle Scholar
  46. 46.
    Wenzel SE, Trudeau JB, Kaminsky DA, Cohn J, Martin RJ, Westcott JY. Effect of 5-lipoxygenase inhibition on bronchoconstriction and airway inflammation in nocturnal asthma. Am J Respir Crit Care Med 1995; 152:897–905.PubMedGoogle Scholar
  47. 47.
    Levy BD, De Sanctis GT, Devchand PR, Kim E, Ackerman K, Schmidt BA et al. Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A(4). Nat Med 2002; 8:1018–1023.PubMedCrossRefGoogle Scholar
  48. 48.
    Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 2005; 73:141–162.PubMedCrossRefGoogle Scholar
  49. 49.
    Bonnans C, Fukunaga K, Keledjian R, Petasis NA, Levy BD. Regulation of phosphatidylinositol 3-kinase by polyisoprenyl phosphates in neutrophil-mediated tissue injury. J Exp Med 2006; 203:857–863.PubMedCrossRefGoogle Scholar
  50. 50.
    Levy BD, Bonnans C, Silverman ES, Palmer LJ, Marigowda G, Israel E. Diminished lipoxin biosynthesis in severe asthma. Am J Respir Crit Care Med 2005; 172:824–830.PubMedCrossRefGoogle Scholar
  51. 51.
    Soussi-Gounni A, Kontolemos M, Hamid Q. Role of IL-9 in the pathophysiology of allergic diseases. J Allergy Clin Immunol 2001; 107:575–582.PubMedCrossRefGoogle Scholar
  52. 52.
    Linden A. Role of interleukin-17 and the neutrophil in asthma. Int Arch Allergy Immunol 2001; 126:179–184.PubMedCrossRefGoogle Scholar
  53. 53.
    Hellings PW, Kasran A, Liu Z, Vandekerckhove P, Wuyts A, Overbergh L et al. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J Respir Cell Mol Biol 2003; 28:42–50.PubMedCrossRefGoogle Scholar
  54. 54.
    Schnyder-Candrian S, Togbe D, Couillin I, Mercier I, Brombacher F, Quesniaux V et al. Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 2006; 203:2715–2725.PubMedCrossRefGoogle Scholar
  55. 55.
    Hashimoto T, Akiyama K, Kobayashi N, Mori A. Comparison of IL-17 production by helper T cells among atopic and nonatopic asthmatics and control subjects. Int Arch Allergy Immunol 2005; 137 Suppl 1:51–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Page N et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 2001; 108:430–438.PubMedCrossRefGoogle Scholar
  57. 57.
    Bullens DM, Truyen E, Coteur L, Dilissen E, Hellings PW, Dupont LJ et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res 2006; 7:135.PubMedCrossRefGoogle Scholar
  58. 58.
    Rahman MS, Yang J, Shan LY, Unruh H, Yang X, Halayko AJ et al. IL-17R activation of human airway smooth muscle cells induces CXCL-8 production via a transcriptional dependent mechanism. Clin Immunol 2005; 115:268–276.PubMedCrossRefGoogle Scholar
  59. 59.
    Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G et al. Killing activity of neutrophils is mediated through activation of proteases by K + flux. Nature 2002; 416:291–297.PubMedCrossRefGoogle Scholar
  60. 60.
    Rao RM, Betz TV, Lamont DJ, Kim MB, Shaw SK, Froio RM et al. Elastase release by transmigrating neutrophils deactivates endothelial-bound SDF-1alpha and attenuates subsequent T lymphocyte transendothelial migration. J Exp Med 2004; 200:713–724.PubMedCrossRefGoogle Scholar
  61. 61.
    Ryu OH, Choi SJ, Firatli E, Choi SW, Hart PS, Shen RF et al. Proteolysis of macrophage inflammatory protein-1alpha isoforms LD78beta and LD78alpha by neutrophil-derived serine proteases. J Biol Chem 2005; 280:17415–17421.PubMedCrossRefGoogle Scholar
  62. 62.
    Padrines M, Schneider-Pozzer M, Bieth JG. Inhibition of neutrophil elastase by alpha1- proteinase inhibitor oxidized by activated neutrophils. Am Rev Respir Dis 1989; 139:783–790.PubMedGoogle Scholar
  63. 63.
    Nufer O, Corbett M, Walz A. Amino-terminal processing of chemokine ENA-78 regulates biological activity. Biochemistry 1999; 38:636–642.PubMedCrossRefGoogle Scholar
  64. 64.
    Wittamer V, Bondue B, Guillabert A, Vassart G, Parmentier M, Communi D. Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J Immunol 2005; 175:487–493.PubMedGoogle Scholar
  65. 65.
    Bank U, Kupper B, Reinhold D, Hoffmann T, Ansorge S. Evidence for a crucial role of neutrophil-derived serine proteases in the inactivation of interleukin-6 at sites of inflammation. FEBS Lett 1999; 461:235–240.PubMedCrossRefGoogle Scholar
  66. 66.
    Scuderi P, Nez PA, Duerr ML, Wong BJ, Valdez CM. Cathepsin-G and leukocyte elastase inactivate human tumor necrosis factor and lymphotoxin. Cell Immunol 1991; 135:299–313.PubMedCrossRefGoogle Scholar
  67. 67.
    Walsh DE, Greene CM, Carroll TP, Taggart CC, Gallagher PM, O' Neill SJ et al. Interleukin-8 up-regulation by neutrophil elastase is mediated by MyD88/IRAK/TRAF-6 in human bronchial epithelium. J Biol Chem 2001; 276:35494–35499.PubMedCrossRefGoogle Scholar
  68. 68.
    Lee KY, Ho SC, Lin HC, Lin SM, Liu CY, Huang CD et al. Neutrophil-derived elastase induces TGF-beta1 secretion in human airway smooth muscle via NF-kappaB pathway. Am J Respir Cell Mol Biol 2006; 35:407–414.PubMedCrossRefGoogle Scholar
  69. 69.
    Fischer BM, Voynow JA. Neutrophil elastase induces MUC5AC gene expression in airway epithelium via a pathway involving reactive oxygen species. Am J Respir Cell Mol Biol 2002; 26:447–452.PubMedGoogle Scholar
  70. 70.
    Shao MX, Ueki IF, Nadel JA. Tumor necrosis factor alpha-converting enzyme mediates MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci USA 2003; 100:11618–11623.PubMedCrossRefGoogle Scholar
  71. 71.
    Shao MX, Nadel JA. Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-alpha-converting enzyme. J Immunol 2005; 175:4009–4016.PubMedGoogle Scholar
  72. 72.
    Champagne B, Tremblay P, Cantin A, St Pierre Y. Proteolytic cleavage of ICAM-1 by human neutrophil elastase. J Immunol 1998; 161:6398–6405.PubMedGoogle Scholar
  73. 73.
    Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 2001; 98:1289–1297.PubMedCrossRefGoogle Scholar
  74. 74.
    Ginzberg HH, Cherapanov V, Dong Q, Cantin A, McCulloch CA, Shannon PT et al. Neutrophil-mediated epithelial injury during transmigration: role of elastase. Am J Physiol Gastrointest Liver Physiol 2001; 281:G705–G717.PubMedGoogle Scholar
  75. 75.
    Oltmanns U, Sukkar MB, Xie S, John M, Chung KF. Induction of human airway smooth muscle apoptosis by neutrophils and neutrophil elastase. Am J Respir Cell Mol Biol 2005; 32:334–341.PubMedCrossRefGoogle Scholar
  76. 76.
    Liu H, Lazarus SC, Caughey GH, Fahy JV. Neutrophil elastase and elastase-rich cystic fibrosis sputum degranulate human eosinophils in vitro. Am J Physiol 1999; 276:L28–L34.PubMedGoogle Scholar
  77. 77.
    Little SA, MacLeod KJ, Chalmers GW, Love JG, McSharry C, Thomson NC. Association of forced expiratory volume with disease duration and sputum neutrophils in chronic asthma. Am J Med 2002; 112:446–452.PubMedCrossRefGoogle Scholar
  78. 78.
    Huang CD, Chen HH, Wang CH, Chou CL, Lin SM, Lin HC et al. Human neutrophil-derived elastase induces airway smooth muscle cell proliferation. Life Sci 2004; 74:2479–2492.PubMedCrossRefGoogle Scholar
  79. 79.
    Hoshino M, Nakamura Y, Sim J, Shimojo J, Isogai S. Bronchial subepithelial fibrosis and expression of matrix metalloproteinase-9 in asthmatic airway inflammation. J Allergy Clin Immunol 1998; 102:783–788.PubMedCrossRefGoogle Scholar
  80. 80.
    Wenzel SE, Balzar S, Cundall M, Chu HW. Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9: association with asthma severity, neutrophilic inflammation, and wound repair. J Allergy Clin Immunol 2003; 111:1345–1352.PubMedCrossRefGoogle Scholar
  81. 81.
    Goldsmith AM, Bentley JK, Zhou L, Jia Y, Bitar KN, Fingar DC et al. Transforming growth factor-beta induces airway smooth muscle hypertrophy. Am J Respir Cell Mol Biol 2006; 34:247–254.PubMedCrossRefGoogle Scholar
  82. 82.
    Xie S, Sukkar MB, Issa R, Khorasani NM, Chung KF. Mechanisms of induction of airway smooth muscle hyperplasia by transforming growth factor-{beta}. Am J Physiol Lung Cell Mol Physiol 2007 293(1):245–253.CrossRefGoogle Scholar
  83. 83.
    Chung KF. Role played by inflammation in the hyperreactivity of the airways in asthma. Thorax 1986; 41:657–662.PubMedCrossRefGoogle Scholar
  84. 84.
    Silbaugh SA, Stengel PW, Cockerham SL, Froelich LL, Bendele AM, Spaethe SM et al. Pharmacologic actions of the second generation leukotriene B4 receptor antagonist LY29311: in vivo pulmonary studies. Naunyn Schmiedebergs Arch Pharmacol 2000; 361:397–404.PubMedCrossRefGoogle Scholar
  85. 85.
    Evans DJ, Barnes PJ, Spaethe SM, van Alstyne EL, Mitchell MI, O'Connor BJ. Effect of a leukotriene B4 receptor antagonist, LY293111, on allergen induced responses in asthma [see comments]. Thorax 1996; 51:1178–1184.PubMedCrossRefGoogle Scholar
  86. 86.
    Nguyen, LT, Lim, S, Oates, T, and Chung, KF. Oral but not inhaled corticosteroid therapy increases airway neutrophils in asthma. Respir Med 2005; 99:200–207.PubMedCrossRefGoogle Scholar
  87. 87.
    Fukakusa M, Bergeron C, Tulic MK, Fiset PO, Al Dewachi O, Laviolette M et al. Oral corticosteroids decrease eosinophil and CC chemokine expression but increase neutrophil, IL-8, and IFN-gamma-inducible protein 10 expression in asthmatic airway mucosa. J Allergy Clin Immunol 2005; 115:280–286.PubMedCrossRefGoogle Scholar
  88. 88.
    Cox G. Glucocorticoid treatment inhibits apoptosis in human neutrophils. Separation of survival and activation outcomes. J Immunol 1995; 154:4719–4725.PubMedGoogle Scholar
  89. 89.
    Daffern PJ, Jagels MA, Hugli TE. Multiple epithelial cell-derived factors enhance neutrophil survival. Regulation by glucocorticoids and tumor necrosis factor-alpha. Am J Respir Cell Mol Biol 1999; 21:259–267.PubMedGoogle Scholar
  90. 90.
    Irakam A, Miskolci V, Vancurova I, Davidson D. Dose-related inhibition of proinflammatory cytokine release from neutrophils of the newborn by dexamethasone, betamethasone, and hydrocortisone. Biol Neonate 2002; 82:89–95.PubMedCrossRefGoogle Scholar
  91. 91.
    Corvol H, Fitting C, Chadelat K, Jacquot J, Tabary O, Boule M et al. Distinct cytokine production by lung and blood neutrophils from children with cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2003; 284:L997–1003.PubMedGoogle Scholar
  92. 92.
    Kikuchi I, Kikuchi S, Kobayashi T, Hagiwara K, Sakamoto Y, Kanazawa M et al. Eosinophil trans-basement membrane migration induced by interleukin-8 and neutrophils. Am J Respir Cell Mol Biol 2006; 34:760–765.PubMedCrossRefGoogle Scholar
  93. 93.
    Strickland I, Kisich K, Hauk PJ, Vottero A, Chrousos GP, Klemm DJ et al. High constitutive glucocorticoid receptor beta in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids. J Exp Med 2001; 193:585–593.PubMedCrossRefGoogle Scholar
  94. 94.
    Jeffery PK, Venge P, Gizycki MJ, Egerod I, Dahl R, Faurschou P. Effects of salmeterol on mucosal inflammation in asthma: a placebo-controlled study. Eur Respir J 2002; 20:1378–1385.PubMedCrossRefGoogle Scholar
  95. 95.
    Maneechotesuwan K, Essilfie-Quaye S, Meah S, Kelly C, Kharitonov SA, Adcock IM et al. Formoterol attenuates neutrophilic airway inflammation in asthma. Chest 2005; 128:1936–1942.PubMedCrossRefGoogle Scholar
  96. 96.
    Shoji T, Yoshida S, Sakamoto H, Hasegawa H, Nakagawa H, Amayasu H. Anti-inflammatory effect of roxithromycin in patients with aspirin-intolerant asthma. Clin Exp Allergy 1999; 29:950–956.PubMedCrossRefGoogle Scholar
  97. 97.
    Amayasu H, Yoshida S, Ebana S, Yamamoto Y, Nishikawa T, Shoji T et al. Clarithromycin suppresses bronchial hyperresponsiveness associated with eosinophilic inflammation in patients with asthma. Ann Allergy Asthma Immunol 2000; 84:594–598.PubMedCrossRefGoogle Scholar
  98. 98.
    Black PN, Blasi F, Jenkins CR, Scicchitano R, Mills GD, Rubinfeld AR et al. Trial of roxithromycin in subjects with asthma and serological evidence of infection with Chlamydia pneumoniae. Am J Respir Crit Care Med 2001; 164:536–541.PubMedGoogle Scholar
  99. 99.
    Kraft M, Cassell GH, Pak J, Martin RJ. Mycoplasma pneumoniae and Chlamydia pneumoniae in asthma: effect of clarithromycin. Chest 2002; 121:1782–1788.PubMedCrossRefGoogle Scholar
  100. 100.
    Johnston SL, Blasi F, Black PN, Martin RJ, Farrell DJ, Nieman RB. The effect of telithromycin in acute exacerbations of asthma. N Engl J Med 2006; 354:1589–1600.PubMedCrossRefGoogle Scholar
  101. 101.
    Chung KF. Phosphodiesterase inhibitors in airways disease. Eur J Pharmacol 2006; 533:110–117.CrossRefGoogle Scholar
  102. 102.
    Caramori G, Papi A. Oxidants and asthma. Thorax 2004; 59:170–173.PubMedCrossRefGoogle Scholar
  103. 103.
    Barnes PJ. New molecular targets for the treatment of neutrophilic diseases. J Allergy Clin Immunol 2007; 119:1055–1062.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kian Fan Chung
    • 1
  1. 1.National Heart and Lung InstituteImperial CollegeLondon

Personalised recommendations