Skip to main content

Neutrophils and Their Mediators in Asthma and Allergic Disease

  • Chapter
Allergy Frontiers: Classification and Pathomechanisms

Part of the book series: Allergy Frontiers ((ALLERGY,volume 2))

  • 907 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lopuhaa CE, Out TA, Jansen HM, Aalberse RC, van der Zee JS. Allergen-induced bronchial inflammation in house dust mite-allergic patients with or without asthma. Clin Exp Allergy 2002; 32:1720–1727.

    Article  PubMed  CAS  Google Scholar 

  2. Nocker RE, Out TA, Weller FR, Mul EP, Jansen HM, van der Zee JS. Influx of neutrophils into the airway lumen at 4 h after segmental allergen challenge in asthma. Int Arch Allergy Immunol 1999; 119:45–53.

    Article  PubMed  CAS  Google Scholar 

  3. Teran LM, CARROLL M, Frew AJ, Montefort S, Lau LC, Davies DE et al. Neutrophil influx and interleukin-8 release after segmental allergen or saline challenge in asthmatics. Int Arch Allergy Immunol 1995; 107:374–375.

    PubMed  CAS  Google Scholar 

  4. Torrego A, Hew M, Oates T, Sukkar M, Fan CK. Expression and activation of TGF-{beta} isoforms in acute allergen-induced remodelling in asthma. Thorax 2007; 62:307–313.

    Article  PubMed  Google Scholar 

  5. Fransson M, Benson M, Wennergren G, Cardell LO. A role for neutrophils in intermittent allergic rhinitis. Acta Otolaryngol 2004; 124:616–620.

    Article  PubMed  CAS  Google Scholar 

  6. Miadonna A, Milazzo N, Gibelli S, Salmaso C, Lorini M, Tedeschi A. Nasal response to a single antigen challenge in patients with allergic rhinitis —inflammatory cell recruitment persists up to 48 hours. Clin Exp Allergy 1999; 29:941–949.

    Article  PubMed  CAS  Google Scholar 

  7. Gibson PG, Simpson JL, Saltos N. Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 2001; 119:1329–1336.

    Article  PubMed  CAS  Google Scholar 

  8. Simpson JL, Scott R, Boyle MJ, Gibson PG. Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology 2006; 11:54–61.

    Article  PubMed  Google Scholar 

  9. Gibson PG, Norzila MZ, Fakes K, Simpson J, Henry RL. Pattern of airway inflammation and its determinants in children with acute severe asthma. Pediatr Pulmonol 1999; 28:261–270.

    Article  PubMed  CAS  Google Scholar 

  10. Barbato A, Panizzolo C, Gheno M, Sainati L, Favero E, Faggian D et al. Bronchoalveolar lavage in asthmatic children: evidence of neutrophil activation in mild-to-moderate persistent asthma. Pediatr Allergy Immunol 2001; 12:73–77.

    Article  PubMed  CAS  Google Scholar 

  11. Jatakanon A, Uasuf C, Maziak W, Lim S, Chung KF, Barnes PJ. Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med 1999; 160:1532–1539.

    PubMed  CAS  Google Scholar 

  12. Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 1999; 160:1001–1008.

    PubMed  CAS  Google Scholar 

  13. Hamilton LM, Torres-Lozano C, Puddicombe SM, Richter A, Kimber I, Dearman RJ et al. The role of the epidermal growth factor receptor in sustaining neutrophil inflammation in severe asthma. Clin Exp Allergy 2003; 33:233–240.

    Article  PubMed  CAS  Google Scholar 

  14. Maneechotesuwan K, Essilfie-Quaye S, Kharitonov S, Adcock I, Barnes P. Loss of control of asthma following inhaled corticosteroid withdrawal is associated with increased sputum inteleukin-8 and neutrophils. Chest 2007; 132:98–105.

    Article  PubMed  CAS  Google Scholar 

  15. Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 2002; 360:1715–1721.

    Article  PubMed  Google Scholar 

  16. de Blic J, Tillie-Leblond I, Tonnel AB, Jaubert F, Scheinmann P, Gosset P. Difficult asthma in children: an analysis of airway inflammation. J Allergy Clin Immunol 2004; 113:94–100.

    Article  PubMed  Google Scholar 

  17. Fahy JV, Kim KW, Liu J, Boushey HA. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J Allergy Clin Immunol 1995; 95:843–852.

    Article  PubMed  CAS  Google Scholar 

  18. Norzila MZ, Fakes K, Henry RL, Simpson J, Gibson PG. Interleukin-8 secretion and neutrophil recruitment accompanies induced sputum eosinophil activation in children with acute asthma. Am J Respir Crit Care Med 2000; 161:769–774.

    PubMed  CAS  Google Scholar 

  19. Lamblin C, Gosset P, Tillie-Leblond I, Saulnier F, Marquette CH, Wallaert B et al. Bronchial neutrophilia in patients with noninfectious status asthmaticus. Am J Respir Crit Care Med 1998; 157:394–402.

    PubMed  CAS  Google Scholar 

  20. Tonnel AB, Gosset P, Tillie-Leblond I. Characteristics of the Inflammatory response in bronchial lavage fluids from patients with status asthmaticus. Int Arch Allergy Immunol 2001; 124:267–271.

    Article  PubMed  CAS  Google Scholar 

  21. Sur S, Crotty TB, Kephart GM, Hyma BA, Colby TV, Reed CE et al. Sudden-onset fatal asthma: A distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa? Am Rev Resp Dis 1993; 148:713–719.

    PubMed  CAS  Google Scholar 

  22. Jarjour NN, Gern JE, Kelly EA, Swenson CA, Dick CR, Busse WW. The effect of an experimental rhinovirus 16 infection on bronchial lavage neutrophils. J Allergy Clin Immunol 2000; 105:1169–1177.

    Article  PubMed  CAS  Google Scholar 

  23. Vagaggini B, Carnevali S, Macchioni P, Taccola M, Fornai E, Bacci E et al. Airway inflammatory response to ozone in subjects with different asthma severity. Eur Respir J 1999; 13:274–280.

    Article  PubMed  CAS  Google Scholar 

  24. Stenfors N, Nordenhall C, Salvi SS, Mudway I, Soderberg M, Blomberg A et al. Different airway inflammatory responses in asthmatic and healthy humans exposed to diesel. Eur Respir J 2004; 23:82–86.

    Article  PubMed  CAS  Google Scholar 

  25. Teramoto S, Shu CY, Ouchi Y, Fukuchi Y. Increased spontaneous production and generation of superoxide anion by blood neutrophils in patients with asthma. J Asthma 1996; 33:149–155.

    Article  PubMed  CAS  Google Scholar 

  26. Asman B, Strand V, Bylin G, Bergstrom K. Peripheral neutrophils after allergic asthmatic reactions. Int J Clin Lab Res 1997; 27:185–188.

    Article  PubMed  CAS  Google Scholar 

  27. Nordman SA, Nyberg PW. Whole blood chemiluminescence as a systemic inflammatory parameter in asthma. J Allergy Clin Immunol 1994; 94:853–860.

    Article  PubMed  CAS  Google Scholar 

  28. Styrt B, Rocklin RE, Klempner MS. Characterization of the neutrophil respiratory burst in atopy. J Allergy Clin Immunol 1988; 81:20–26.

    Article  PubMed  CAS  Google Scholar 

  29. Monteseirin J, Bonilla I, Camacho J, Conde J, Sobrino F. Elevated secretion of myeloperoxidase by neutrophils from asthmatic patients: the effect of immunotherapy. J Allergy Clin Immunol 2001; 107:623–626.

    Article  PubMed  CAS  Google Scholar 

  30. Monteseirin J, Camacho MJ, Montano R, Llamas E, Conde M, Carballo M et al. Enhancement of Antigen-specific functional responses by neutrophils from allergic patients. J Exp Med 1996; 183:2571–2579.

    Article  PubMed  CAS  Google Scholar 

  31. Monteseirin J, Bonilla I, Camacho MJ, Conde J, Sobrino F. IgE-dependent release of myeloperoxidase by neutrophils from allergic patients. Clin Exp Allergy 2001; 31:889–892.

    Article  PubMed  CAS  Google Scholar 

  32. Monteseirin J, Chacon P, Vega A, Sanchez-Monteseirin H, Asturias JA, Martinez A et al. L-selectin expression on neutrophils from allergic patients. Clin Exp Allergy 2005; 35:1204–1213.

    Article  PubMed  CAS  Google Scholar 

  33. Wang D, Smitz J, Derde MP, Clement P. Concentrations of myeloperoxidase in nasal secretions of atopic patients after nasal allergen challenge and during natural allergen exposure. Int Arch Allergy Immunol 1996; 110:85–90.

    Article  PubMed  CAS  Google Scholar 

  34. Monteseirin J, Fernandez-Pineda I, Chacon P, Vega A, Bonilla I, Camacho MJ et al. Myeloperoxidase release after allergen-specific conjunctival challenge. J Asthma 2004; 41:639–643.

    Article  PubMed  CAS  Google Scholar 

  35. Gounni AS, Lamkhioued B, Koussih L, Ra C, Renzi PM, Hamid Q. Human neutrophils express the high-affinity receptor for immunoglobulin E (Fc epsilon RI): role in asthma. FASEB J 2001; 15:940–949.

    Article  PubMed  CAS  Google Scholar 

  36. Saffar AS, Alphonse MP, Shan L, Hayglass KT, Simons FE, Gounni AS. IgE modulates neutrophil survival in asthma: role of mitochondrial pathway. J Immunol 2007; 178:2535–2541.

    PubMed  CAS  Google Scholar 

  37. Simpson JL, Grissell TV, Douwes J, Scott RJ, Boyle MJ, Gibson PG. Innate immune activation in neutrophilic asthma and bronchiectasis. Thorax 2007; 62:211–218.

    Article  PubMed  Google Scholar 

  38. Mann BS, Chung KF. Blood neutrophil activation markers in severe asthma: lack of inhibition by prednisolone therapy. Respir Res. 2006; 7:59.

    Article  PubMed  CAS  Google Scholar 

  39. Cundall M, Sun Y, Miranda C, Trudeau JB, Barnes S, Wenzel SE. Neutrophil-derived matrix metalloproteinase-9 is increased in severe asthma and poorly inhibited by glucocorticoids. J Allergy Clin Immunol 2003; 112:1064–1071.

    Article  PubMed  CAS  Google Scholar 

  40. Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 2000; 80:617–653.

    PubMed  CAS  Google Scholar 

  41. Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am.J Physiol Lung Cell Mol Physiol 2003; 284:L566–L577.

    PubMed  CAS  Google Scholar 

  42. Govindaraju V, Michoud MC, Al Chalabi M, Ferraro P, Powell WS, Martin JG. Interleukin-8: novel roles in human airway smooth muscle cell contraction and migration. Am J Physiol Cell Physiol 2006; 291:C957–C965.

    Article  PubMed  CAS  Google Scholar 

  43. Lee E, Lindo T, Jackson N, Meng-Choong L, Reynolds P, Hill A et al. Reversal of human neutrophil survival by leukotriene B(4) receptor blockade and 5-lipoxygenase and 5-lipoxygenase activating protein inhibitors. Am J Respir Crit Care Med 1999; 160:2079–2085.

    PubMed  CAS  Google Scholar 

  44. Kostikas K, Gaga M, Papatheodorou G, Karamanis T, Orphanidou D, Loukides S. Leukotriene B4 in exhaled breath condensate and sputum supernatant in patients with COPD and asthma. Chest 2005; 127:1553–1559.

    Article  PubMed  CAS  Google Scholar 

  45. Csoma Z, Kharitonov SA, Balint B, Bush A, Wilson NM, Barnes PJ. Increased leukotrienes in exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med 2002; 166:1345–1349.

    Article  PubMed  Google Scholar 

  46. Wenzel SE, Trudeau JB, Kaminsky DA, Cohn J, Martin RJ, Westcott JY. Effect of 5-lipoxygenase inhibition on bronchoconstriction and airway inflammation in nocturnal asthma. Am J Respir Crit Care Med 1995; 152:897–905.

    PubMed  CAS  Google Scholar 

  47. Levy BD, De Sanctis GT, Devchand PR, Kim E, Ackerman K, Schmidt BA et al. Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A(4). Nat Med 2002; 8:1018–1023.

    Article  PubMed  CAS  Google Scholar 

  48. Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 2005; 73:141–162.

    Article  PubMed  CAS  Google Scholar 

  49. Bonnans C, Fukunaga K, Keledjian R, Petasis NA, Levy BD. Regulation of phosphatidylinositol 3-kinase by polyisoprenyl phosphates in neutrophil-mediated tissue injury. J Exp Med 2006; 203:857–863.

    Article  PubMed  CAS  Google Scholar 

  50. Levy BD, Bonnans C, Silverman ES, Palmer LJ, Marigowda G, Israel E. Diminished lipoxin biosynthesis in severe asthma. Am J Respir Crit Care Med 2005; 172:824–830.

    Article  PubMed  Google Scholar 

  51. Soussi-Gounni A, Kontolemos M, Hamid Q. Role of IL-9 in the pathophysiology of allergic diseases. J Allergy Clin Immunol 2001; 107:575–582.

    Article  PubMed  CAS  Google Scholar 

  52. Linden A. Role of interleukin-17 and the neutrophil in asthma. Int Arch Allergy Immunol 2001; 126:179–184.

    Article  PubMed  CAS  Google Scholar 

  53. Hellings PW, Kasran A, Liu Z, Vandekerckhove P, Wuyts A, Overbergh L et al. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am J Respir Cell Mol Biol 2003; 28:42–50.

    Article  PubMed  CAS  Google Scholar 

  54. Schnyder-Candrian S, Togbe D, Couillin I, Mercier I, Brombacher F, Quesniaux V et al. Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 2006; 203:2715–2725.

    Article  PubMed  CAS  Google Scholar 

  55. Hashimoto T, Akiyama K, Kobayashi N, Mori A. Comparison of IL-17 production by helper T cells among atopic and nonatopic asthmatics and control subjects. Int Arch Allergy Immunol 2005; 137 Suppl 1:51–54.

    Article  PubMed  CAS  Google Scholar 

  56. Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Page N et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 2001; 108:430–438.

    Article  PubMed  CAS  Google Scholar 

  57. Bullens DM, Truyen E, Coteur L, Dilissen E, Hellings PW, Dupont LJ et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res 2006; 7:135.

    Article  PubMed  CAS  Google Scholar 

  58. Rahman MS, Yang J, Shan LY, Unruh H, Yang X, Halayko AJ et al. IL-17R activation of human airway smooth muscle cells induces CXCL-8 production via a transcriptional dependent mechanism. Clin Immunol 2005; 115:268–276.

    Article  PubMed  CAS  Google Scholar 

  59. Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G et al. Killing activity of neutrophils is mediated through activation of proteases by K + flux. Nature 2002; 416:291–297.

    Article  PubMed  CAS  Google Scholar 

  60. Rao RM, Betz TV, Lamont DJ, Kim MB, Shaw SK, Froio RM et al. Elastase release by transmigrating neutrophils deactivates endothelial-bound SDF-1alpha and attenuates subsequent T lymphocyte transendothelial migration. J Exp Med 2004; 200:713–724.

    Article  PubMed  CAS  Google Scholar 

  61. Ryu OH, Choi SJ, Firatli E, Choi SW, Hart PS, Shen RF et al. Proteolysis of macrophage inflammatory protein-1alpha isoforms LD78beta and LD78alpha by neutrophil-derived serine proteases. J Biol Chem 2005; 280:17415–17421.

    Article  PubMed  CAS  Google Scholar 

  62. Padrines M, Schneider-Pozzer M, Bieth JG. Inhibition of neutrophil elastase by alpha1- proteinase inhibitor oxidized by activated neutrophils. Am Rev Respir Dis 1989; 139:783–790.

    PubMed  CAS  Google Scholar 

  63. Nufer O, Corbett M, Walz A. Amino-terminal processing of chemokine ENA-78 regulates biological activity. Biochemistry 1999; 38:636–642.

    Article  PubMed  CAS  Google Scholar 

  64. Wittamer V, Bondue B, Guillabert A, Vassart G, Parmentier M, Communi D. Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J Immunol 2005; 175:487–493.

    PubMed  CAS  Google Scholar 

  65. Bank U, Kupper B, Reinhold D, Hoffmann T, Ansorge S. Evidence for a crucial role of neutrophil-derived serine proteases in the inactivation of interleukin-6 at sites of inflammation. FEBS Lett 1999; 461:235–240.

    Article  PubMed  CAS  Google Scholar 

  66. Scuderi P, Nez PA, Duerr ML, Wong BJ, Valdez CM. Cathepsin-G and leukocyte elastase inactivate human tumor necrosis factor and lymphotoxin. Cell Immunol 1991; 135:299–313.

    Article  PubMed  CAS  Google Scholar 

  67. Walsh DE, Greene CM, Carroll TP, Taggart CC, Gallagher PM, O' Neill SJ et al. Interleukin-8 up-regulation by neutrophil elastase is mediated by MyD88/IRAK/TRAF-6 in human bronchial epithelium. J Biol Chem 2001; 276:35494–35499.

    Article  PubMed  CAS  Google Scholar 

  68. Lee KY, Ho SC, Lin HC, Lin SM, Liu CY, Huang CD et al. Neutrophil-derived elastase induces TGF-beta1 secretion in human airway smooth muscle via NF-kappaB pathway. Am J Respir Cell Mol Biol 2006; 35:407–414.

    Article  PubMed  CAS  Google Scholar 

  69. Fischer BM, Voynow JA. Neutrophil elastase induces MUC5AC gene expression in airway epithelium via a pathway involving reactive oxygen species. Am J Respir Cell Mol Biol 2002; 26:447–452.

    PubMed  CAS  Google Scholar 

  70. Shao MX, Ueki IF, Nadel JA. Tumor necrosis factor alpha-converting enzyme mediates MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci USA 2003; 100:11618–11623.

    Article  PubMed  CAS  Google Scholar 

  71. Shao MX, Nadel JA. Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-alpha-converting enzyme. J Immunol 2005; 175:4009–4016.

    PubMed  CAS  Google Scholar 

  72. Champagne B, Tremblay P, Cantin A, St Pierre Y. Proteolytic cleavage of ICAM-1 by human neutrophil elastase. J Immunol 1998; 161:6398–6405.

    PubMed  CAS  Google Scholar 

  73. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 2001; 98:1289–1297.

    Article  PubMed  CAS  Google Scholar 

  74. Ginzberg HH, Cherapanov V, Dong Q, Cantin A, McCulloch CA, Shannon PT et al. Neutrophil-mediated epithelial injury during transmigration: role of elastase. Am J Physiol Gastrointest Liver Physiol 2001; 281:G705–G717.

    PubMed  CAS  Google Scholar 

  75. Oltmanns U, Sukkar MB, Xie S, John M, Chung KF. Induction of human airway smooth muscle apoptosis by neutrophils and neutrophil elastase. Am J Respir Cell Mol Biol 2005; 32:334–341.

    Article  PubMed  CAS  Google Scholar 

  76. Liu H, Lazarus SC, Caughey GH, Fahy JV. Neutrophil elastase and elastase-rich cystic fibrosis sputum degranulate human eosinophils in vitro. Am J Physiol 1999; 276:L28–L34.

    PubMed  CAS  Google Scholar 

  77. Little SA, MacLeod KJ, Chalmers GW, Love JG, McSharry C, Thomson NC. Association of forced expiratory volume with disease duration and sputum neutrophils in chronic asthma. Am J Med 2002; 112:446–452.

    Article  PubMed  Google Scholar 

  78. Huang CD, Chen HH, Wang CH, Chou CL, Lin SM, Lin HC et al. Human neutrophil-derived elastase induces airway smooth muscle cell proliferation. Life Sci 2004; 74:2479–2492.

    Article  PubMed  CAS  Google Scholar 

  79. Hoshino M, Nakamura Y, Sim J, Shimojo J, Isogai S. Bronchial subepithelial fibrosis and expression of matrix metalloproteinase-9 in asthmatic airway inflammation. J Allergy Clin Immunol 1998; 102:783–788.

    Article  PubMed  CAS  Google Scholar 

  80. Wenzel SE, Balzar S, Cundall M, Chu HW. Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9: association with asthma severity, neutrophilic inflammation, and wound repair. J Allergy Clin Immunol 2003; 111:1345–1352.

    Article  PubMed  CAS  Google Scholar 

  81. Goldsmith AM, Bentley JK, Zhou L, Jia Y, Bitar KN, Fingar DC et al. Transforming growth factor-beta induces airway smooth muscle hypertrophy. Am J Respir Cell Mol Biol 2006; 34:247–254.

    Article  PubMed  CAS  Google Scholar 

  82. Xie S, Sukkar MB, Issa R, Khorasani NM, Chung KF. Mechanisms of induction of airway smooth muscle hyperplasia by transforming growth factor-{beta}. Am J Physiol Lung Cell Mol Physiol 2007 293(1):245–253.

    Article  CAS  Google Scholar 

  83. Chung KF. Role played by inflammation in the hyperreactivity of the airways in asthma. Thorax 1986; 41:657–662.

    Article  PubMed  CAS  Google Scholar 

  84. Silbaugh SA, Stengel PW, Cockerham SL, Froelich LL, Bendele AM, Spaethe SM et al. Pharmacologic actions of the second generation leukotriene B4 receptor antagonist LY29311: in vivo pulmonary studies. Naunyn Schmiedebergs Arch Pharmacol 2000; 361:397–404.

    Article  PubMed  CAS  Google Scholar 

  85. Evans DJ, Barnes PJ, Spaethe SM, van Alstyne EL, Mitchell MI, O'Connor BJ. Effect of a leukotriene B4 receptor antagonist, LY293111, on allergen induced responses in asthma [see comments]. Thorax 1996; 51:1178–1184.

    Article  PubMed  CAS  Google Scholar 

  86. Nguyen, LT, Lim, S, Oates, T, and Chung, KF. Oral but not inhaled corticosteroid therapy increases airway neutrophils in asthma. Respir Med 2005; 99:200–207.

    Article  PubMed  Google Scholar 

  87. Fukakusa M, Bergeron C, Tulic MK, Fiset PO, Al Dewachi O, Laviolette M et al. Oral corticosteroids decrease eosinophil and CC chemokine expression but increase neutrophil, IL-8, and IFN-gamma-inducible protein 10 expression in asthmatic airway mucosa. J Allergy Clin Immunol 2005; 115:280–286.

    Article  PubMed  CAS  Google Scholar 

  88. Cox G. Glucocorticoid treatment inhibits apoptosis in human neutrophils. Separation of survival and activation outcomes. J Immunol 1995; 154:4719–4725.

    PubMed  CAS  Google Scholar 

  89. Daffern PJ, Jagels MA, Hugli TE. Multiple epithelial cell-derived factors enhance neutrophil survival. Regulation by glucocorticoids and tumor necrosis factor-alpha. Am J Respir Cell Mol Biol 1999; 21:259–267.

    PubMed  CAS  Google Scholar 

  90. Irakam A, Miskolci V, Vancurova I, Davidson D. Dose-related inhibition of proinflammatory cytokine release from neutrophils of the newborn by dexamethasone, betamethasone, and hydrocortisone. Biol Neonate 2002; 82:89–95.

    Article  PubMed  CAS  Google Scholar 

  91. Corvol H, Fitting C, Chadelat K, Jacquot J, Tabary O, Boule M et al. Distinct cytokine production by lung and blood neutrophils from children with cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2003; 284:L997–1003.

    PubMed  CAS  Google Scholar 

  92. Kikuchi I, Kikuchi S, Kobayashi T, Hagiwara K, Sakamoto Y, Kanazawa M et al. Eosinophil trans-basement membrane migration induced by interleukin-8 and neutrophils. Am J Respir Cell Mol Biol 2006; 34:760–765.

    Article  PubMed  CAS  Google Scholar 

  93. Strickland I, Kisich K, Hauk PJ, Vottero A, Chrousos GP, Klemm DJ et al. High constitutive glucocorticoid receptor beta in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids. J Exp Med 2001; 193:585–593.

    Article  PubMed  CAS  Google Scholar 

  94. Jeffery PK, Venge P, Gizycki MJ, Egerod I, Dahl R, Faurschou P. Effects of salmeterol on mucosal inflammation in asthma: a placebo-controlled study. Eur Respir J 2002; 20:1378–1385.

    Article  PubMed  CAS  Google Scholar 

  95. Maneechotesuwan K, Essilfie-Quaye S, Meah S, Kelly C, Kharitonov SA, Adcock IM et al. Formoterol attenuates neutrophilic airway inflammation in asthma. Chest 2005; 128:1936–1942.

    Article  PubMed  CAS  Google Scholar 

  96. Shoji T, Yoshida S, Sakamoto H, Hasegawa H, Nakagawa H, Amayasu H. Anti-inflammatory effect of roxithromycin in patients with aspirin-intolerant asthma. Clin Exp Allergy 1999; 29:950–956.

    Article  PubMed  CAS  Google Scholar 

  97. Amayasu H, Yoshida S, Ebana S, Yamamoto Y, Nishikawa T, Shoji T et al. Clarithromycin suppresses bronchial hyperresponsiveness associated with eosinophilic inflammation in patients with asthma. Ann Allergy Asthma Immunol 2000; 84:594–598.

    Article  PubMed  CAS  Google Scholar 

  98. Black PN, Blasi F, Jenkins CR, Scicchitano R, Mills GD, Rubinfeld AR et al. Trial of roxithromycin in subjects with asthma and serological evidence of infection with Chlamydia pneumoniae. Am J Respir Crit Care Med 2001; 164:536–541.

    PubMed  CAS  Google Scholar 

  99. Kraft M, Cassell GH, Pak J, Martin RJ. Mycoplasma pneumoniae and Chlamydia pneumoniae in asthma: effect of clarithromycin. Chest 2002; 121:1782–1788.

    Article  PubMed  CAS  Google Scholar 

  100. Johnston SL, Blasi F, Black PN, Martin RJ, Farrell DJ, Nieman RB. The effect of telithromycin in acute exacerbations of asthma. N Engl J Med 2006; 354:1589–1600.

    Article  PubMed  CAS  Google Scholar 

  101. Chung KF. Phosphodiesterase inhibitors in airways disease. Eur J Pharmacol 2006; 533:110–117.

    Article  CAS  Google Scholar 

  102. Caramori G, Papi A. Oxidants and asthma. Thorax 2004; 59:170–173.

    Article  PubMed  CAS  Google Scholar 

  103. Barnes PJ. New molecular targets for the treatment of neutrophilic diseases. J Allergy Clin Immunol 2007; 119:1055–1062.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chung, K.F. (2009). Neutrophils and Their Mediators in Asthma and Allergic Disease . In: Pawankar, R., Holgate, S.T., Rosenwasser, L.J. (eds) Allergy Frontiers: Classification and Pathomechanisms. Allergy Frontiers, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-88315-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-88315-9_12

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-88314-2

  • Online ISBN: 978-4-431-88315-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics