Advertisement

Role of NKT Cells in the Regulation of Ongoing Type 2 Immune Response

  • Christelle Faveeuw
  • Thomas Roumier
  • Monique Capron
  • David Dombrowicz
Part of the Allergy Frontiers book series (ALLERGY, volume 2)

Abstract

CD1d-restricted natural killer T (NKT) cells represent a heterogeneous population of innate/memory immune cells. A striking characteristic of NKT cells is their ability to produce Th1- and/or Th2-type cytokines quickly after primary stimulation with glycolipid antigen presented by antigen-presenting cells in the context of CD1d. Through this property, NKT cells are a unique T lymphocyte subpopulation that has been implicated in the regulation of immune responses associated with a broad range of diseases, including autoimmunity, inflammatory and infectious diseases as well as tumour pathologies. Although their role in regulating Th1 response to self-antigens (autoimmune diseases) or foreign antigens (infectious disease) has been largely described, recent evidence also suggests that NKT cells are implicated in the initiation of some Th2-related inflammatory and infectious diseases, thus underlying the flexibility of this cell population. Here we review the general features of these cells as well as their influence on Th2-associated pathologies. We will particularly emphasize the role of NKT cells in the promotion of allergic asthma and helminthiasis. Our current understanding on the mechanisms by which NKT cells activate and modulate Th2 immune response will be discussed.

Keywords

Atopic Dermatitis Allergy Clin Immunol Allergic Asthma iNKT Cell Invariant Natural Killer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NKT cells: what's in a name? Nat Rev Immunol 2004; 4:231–237.PubMedCrossRefGoogle Scholar
  2. 2.
    Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG. NKT cells: facts, functions and fallacies. Immunol Today 2000; 21:573–583.PubMedCrossRefGoogle Scholar
  3. 3.
    Kronenberg M, Gapin L. The unconventional lifestyle of NKT cells. Nat Rev Immunol 2002; 2:557–568.PubMedGoogle Scholar
  4. 4.
    Brossay L, Jullien D, Cardell S, Sydora BC, Burdin N, Modlin RL, Kronenberg M. Mouse CD1 is mainly expressed on hemopoietic-derived cells. J Immunol 1997; 159:1216–1224.PubMedGoogle Scholar
  5. 5.
    Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 2004; 114:1379–1388.PubMedGoogle Scholar
  6. 6.
    Bendelac A, Rivera MN, Park SH, Roark JH. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 1997; 15:535–562.PubMedCrossRefGoogle Scholar
  7. 7.
    Kronenberg M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 2005; 23:877–900.PubMedCrossRefGoogle Scholar
  8. 8.
    Kenna T, Golden-Mason L, Porcelli SA, Koezuka Y, Hegarty JE, O'Farrelly C, Doherty DG. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 2003; 171:1775–1779.PubMedGoogle Scholar
  9. 9.
    Prussin C, Foster B. TCR V alpha 24 and V beta 11 coexpression defines a human NK1 T cell analog containing a unique Th0 subpopulation. J Immunol 1997; 159:5862–5870.PubMedGoogle Scholar
  10. 10.
    Bendelac A, Savage PB, Teyton L. The Biology of NKT Cells. Annu Rev Immunol 2007; 25:297–336.PubMedCrossRefGoogle Scholar
  11. 11.
    Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 1997; 278:1626–1629.PubMedCrossRefGoogle Scholar
  12. 12.
    Pyz E, Naidenko O, Miyake S, Yamamura T, Berberich I, Cardell S, Kronenberg M, Herrmann T. The complementarity determining region 2 of BV8S2 (V beta 8.2) contributes to antigen recognition by rat invariant NKT cell TCR. J Immunol 2006; 176:7447–7455.PubMedGoogle Scholar
  13. 13.
    Schofield L, McConville MJ, Hansen D, Campbell AS, Fraser-Reid B, Grusby MJ, Tachado SD. CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 1999; 283:225–229.PubMedCrossRefGoogle Scholar
  14. 14.
    Mattner J, Debord KL, Ismail N, Goff RD, Cantu C, 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage PB, Bendelac A. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 2005; 434:525–529.PubMedCrossRefGoogle Scholar
  15. 15.
    Fischer K, Scotet E, Niemeyer M, Koebernick H, Zerrahn J, Maillet S, Hurwitz R, Kursar M, Bonneville M, Kaufmann SH, Schaible UE. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci USA 2004; 101:10685–10690.PubMedCrossRefGoogle Scholar
  16. 16.
    Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 2005; 434:520–525.PubMedCrossRefGoogle Scholar
  17. 17.
    Amprey JL, Im JS, Turco SJ, Murray HW, Illarionov PA, Besra GS, Porcelli SA, Spath GF. A subset of liver NK T cells is activated during Leishmania donovani infection by CD1dbound lipophosphoglycan. J Exp Med 2004; 200:895–904.PubMedCrossRefGoogle Scholar
  18. 18.
    Speak AO, Salio M, Neville DC, Fontaine J, Priestman DA, Platt N, Heare T, Butters TD, Dwek RA, Trottein F, Exley MA, Cerundolo V, Platt FM. Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. Proc Natl Acad Sci USA 2007; 104:5971–5976.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhou D, Mattner J, Cantu C, 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu YP, Yamashita T, Teneberg S, Wang D, Proia RL, Levery SB, Savage PB, Teyton L, Bendelac A. Lysosomal glycosphingolipid recognition by NKT cells. Science 2004; 306:1786–1789.PubMedCrossRefGoogle Scholar
  20. 20.
    Skold M, Faizunnessa NN, Wang CR, Cardell S. CD1d-specific NK1.1 + T cells with a transgenic variant TCR. J Immunol 2000; 165:168–174.PubMedGoogle Scholar
  21. 21.
    Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 2004; 199:947–957.PubMedCrossRefGoogle Scholar
  22. 22.
    Gadola SD, Dulphy N, Salio M, Cerundolo V. Valpha24-JalphaQ-independent, CD1drestricted recognition of alpha-galactosylceramide by human CD4(+) and CD8alphabeta (+) T lymphocytes. J Immunol 2002; 168:5514–5520.PubMedGoogle Scholar
  23. 23.
    Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, Bendelac A. Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 1999; 163:4647–4650.PubMedGoogle Scholar
  24. 24.
    Kitamura H, Iwakabe K, Yahata T, Nishimura S, Ohta A, Ohmi Y, Sato M, Takeda K, Okumura K, Van Kaer L, Kawano T, Taniguchi M, Nishimura T. The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 1999; 189:1121–1128.PubMedCrossRefGoogle Scholar
  25. 25.
    Sonoda KH, Faunce DE, Taniguchi M, Exley M, Balk S, Stein-Streilein J. NK T cell-derived IL-10 is essential for the differentiation of antigen-specific T regulatory cells in systemic tolerance. J Immunol 2001; 166:42–50.PubMedGoogle Scholar
  26. 26.
    Cohn L, Elias JA, Chupp GL. Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol 2004; 22:789–815.PubMedCrossRefGoogle Scholar
  27. 27.
    Akbari O, Stock P, DeKruyff RH, Umetsu DT. Role of regulatory T cells in allergy and asthma. Curr Opin Immunol 2003; 15:627–633.PubMedCrossRefGoogle Scholar
  28. 28.
    Lisbonne M, Diem S, de Castro Keller A, Lefort J, Araujo LM, Hachem P, Fourneau JM, Sidobre S, Kronenberg M, Taniguchi M, Van Endert P, Dy M, Askenase P, Russo M, Vargaftig BB, Herbelin A, Leite-de-Moraes MC. Cutting edge: invariant V alpha 14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model. J Immunol 2003; 171:1637–1641.PubMedGoogle Scholar
  29. 29.
    Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S, Nakayama T, Taniguchi M, Grusby MJ, DeKruyff RH, Umetsu DT. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 2003; 9:582–588.PubMedCrossRefGoogle Scholar
  30. 30.
    Bilenki L, Yang J, Fan Y, Wang S, Yang X. Natural killer T cells contribute to airway eosinophilic inflammation induced by ragweed through enhanced IL-4 and eotaxin production. Eur J Immunol 2004; 34:345–354.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim JO, Kim DH, Chang WS, Hong C, Park SH, Kim S, Kang CY. Asthma is induced by intranasal coadministration of allergen and natural killer T-cell ligand in a mouse model. J Allergy Clin Immunol 2004; 114:1332–1338.PubMedCrossRefGoogle Scholar
  32. 32.
    Meyer EH, Goya S, Akbari O, Berry GJ, Savage PB, Kronenberg M, Nakayama T, DeKruyff RH, Umetsu DT. Glycolipid activation of invariant T cell receptor + NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4 + T cells. Proc Natl Acad Sci U S A 2006; 103:2782–2787.PubMedCrossRefGoogle Scholar
  33. 33.
    Brown DR, Fowell DJ, Corry DB, Wynn TA, Moskowitz NH, Cheever AW, Locksley RM, Reiner SL. Beta 2-microglobulin-dependent NK1.1 + T cells are not essential for T helper cell 2 immune responses. J Exp Med 1996; 184:1295–1304.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang Y, Rogers KH, Lewis DB. Beta 2-microglobulin-dependent T cells are dispensable for allergen-induced T helper 2 responses. J Exp Med 1996; 184:1507–1512.PubMedCrossRefGoogle Scholar
  35. 35.
    Korsgren M, Persson CG, Sundler F, Bjerke T, Hansson T, Chambers BJ, Hong S, Van Kaer L, Ljunggren HG, Korsgren O. Natural killer cells determine development of allergen-induced eosinophilic airway inflammation in mice. J Exp Med 1999; 189:553–562.PubMedCrossRefGoogle Scholar
  36. 36.
    Kim HS, Garcia J, Exley M, Johnson KW, Balk SP, Blumberg RS. Biochemical characterization of CD1d expression in the absence of beta2-microglobulin. J Biol Chem 1999; 274:9289–9295.PubMedCrossRefGoogle Scholar
  37. 37.
    Sen Y, Yongyi B, Yuling H, Luokun X, Li H, Jie X, Tao D, Gang Z, Junyan L, Chunsong H, Zhang X, Youxin J, Feili G, Boquan J, Jinquan T. V alpha 24-invariant NKT cells from patients with allergic asthma express CCR9 at high frequency and induce Th2 bias of CD3 + T cells upon CD226 engagement. J Immunol 2005; 175:4914–4926.PubMedGoogle Scholar
  38. 38.
    Akbari O, Faul JL, Hoyte EG, Berry GJ, Wahlstrom J, Kronenberg M, DeKruyff RH, Umetsu DT. CD4 + invariant T-cell-receptor + natural killer T cells in bronchial asthma. N Engl J Med 2006; 354:1117–1129.PubMedCrossRefGoogle Scholar
  39. 39.
    Mutalithas K, Croudace J, Guillen C, Siddiqui S, Thickett D, Wardlaw A, Lammas D, Brightling C. Bronchoalveolar lavage invariant natural killer T cells are not increased in asthma. J Allergy Clin Immunol 2007; 119:1274–1276.PubMedCrossRefGoogle Scholar
  40. 40.
    Pham-Thi N, de Blic J, Le Bourgeois M, Dy M, Scheinmann P, Leite-de-Moraes MC. Enhanced frequency of immunoregulatory invariant natural killer T cells in the airways of children with asthma. J Allergy Clin Immunol 2006; 117:217–218.PubMedCrossRefGoogle Scholar
  41. 41.
    Vijayanand P, Seumois G, Pickard C, Powell RM, Angco G, Sammut D, Gadola SD, Friedmann PS, Djukanovic R. Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N Engl J Med 2007; 356:1410–1422.PubMedCrossRefGoogle Scholar
  42. 42.
    Pham-Thi N, de Blic J, Leite-de-Moraes MC. Invariant natural killer T cells in bronchial asthma. N Engl J Med 2006; 354:2613–2616; author reply 2613–2616.PubMedCrossRefGoogle Scholar
  43. 43.
    Thomas SY, Lilly CM, Luster AD. Invariant natural killer T cells in bronchial asthma. N Engl J Med 2006; 354:2613–2616; author reply 2613–2616.PubMedCrossRefGoogle Scholar
  44. 44.
    Hamzaoui A, Rouhou SC, Grairi H, Abid H, Ammar J, Chelbi H, Hamzaoui K. NKT cells in the induced sputum of severe asthmatics. Mediators Inflamm 2006; 2006:71214.PubMedCrossRefGoogle Scholar
  45. 45.
    Ikegami Y, Yokoyama A, Haruta Y, Hiyama K, Kohno N. Circulating natural killer T cells in patients with asthma. J Asthma 2004; 41:877–882.PubMedCrossRefGoogle Scholar
  46. 46.
    La Cava A, Van Kaer L, Fu Dong S. CD4 + CD25 + Tregs and NKT cells: regulators regulating regulators. Trends Immunol 2006; 27:322–327.PubMedCrossRefGoogle Scholar
  47. 47.
    Agea E, Russano A, Bistoni O, Mannucci R, Nicoletti I, Corazzi L, Postle AD, De Libero G, Porcelli SA, Spinozzi F. Human CD1-restricted T cell recognition of lipids from pollens. J Exp Med 2005; 202:295–308.PubMedCrossRefGoogle Scholar
  48. 48.
    Matsuda H, Suda T, Sato J, Nagata T, Koide Y, Chida K, Nakamura H. alpha-Galactosylceramide, a ligand of natural killer T cells, inhibits allergic airway inflammation. Am J Respir Cell Mol Biol 2005; 33:22–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Hachem P, Lisbonne M, Michel ML, Diem S, Roongapinun S, Lefort J, Marchal G, Herbelin A, Askenase PW, Dy M, Leite-de-Moraes MC. Alpha-galactosylceramide-induced iNKT cells suppress experimental allergic asthma in sensitized mice: role of IFN-gamma. Eur J Immunol 2005; 35:2793–2802.PubMedCrossRefGoogle Scholar
  50. 50.
    Morishima Y, Ishii Y, Kimura T, Shibuya A, Shibuya K, Hegab AE, Iizuka T, Kiwamoto T, Matsuno Y, Sakamoto T, Nomura A, Taniguchi M, Sekizawa K. Suppression of eosinophilic airway inflammation by treatment with alpha-galactosylceramide. Eur J Immunol 2005; 35:2803–2814.PubMedCrossRefGoogle Scholar
  51. 51.
    Leung DY, Bieber T. Atopic dermatitis. Lancet 2003; 361:151–160.PubMedCrossRefGoogle Scholar
  52. 52.
    Kaminishi K, Soma Y, Kawa Y, Mizoguchi M. Flow cytometric analysis of IL-4, IL-13 and IFN-gamma expression in peripheral blood mononuclear cells and detection of circulating IL-13 in patients with atopic dermatitis provide evidence for the involvement of type 2 cytokines in the disease. J Dermatol Sci 2002; 29:19–25.PubMedCrossRefGoogle Scholar
  53. 53.
    Elkhal A, Pichavant M, He R, Scott J, Meyer E, Goya S, Geha RS, Umetsu DT. CD1d restricted natural killer T cells are not required for allergic skin inflammation. J Allergy Clin Immunol 2006; 118:1363–1368.PubMedCrossRefGoogle Scholar
  54. 54.
    Smiley ST, Kaplan MH, Grusby MJ. Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 1997; 275:977–979.PubMedCrossRefGoogle Scholar
  55. 55.
    Oishi Y, Sakamoto A, Kurasawa K, Nakajima H, Nakao A, Nakagawa N, Tanabe E, Saito Y, Iwamoto I. CD4-CD8- T cells bearing invariant Valpha24JalphaQ TCR alpha-chain are decreased in patients with atopic diseases. Clin Exp Immunol 2000; 119:404–411.PubMedCrossRefGoogle Scholar
  56. 56.
    Takahashi T, Nakamura K, Chiba S, Kanda Y, Tamaki K, Hirai H. V alpha 24 + natural killer T cells are markedly decreased in atopic dermatitis patients. Hum Immunol 2003; 64:586–592.PubMedGoogle Scholar
  57. 57.
    Magnan A, Mely L, Prato S, Vervloet D, Romagne F, Camilla C, Necker A, Casano B, Montero-Jullian F, Fert V, Malissen B, Bongrand P. Relationships between natural T cells, atopy, IgE levels, and IL-4 production. Allergy 2000; 55:286–290.PubMedCrossRefGoogle Scholar
  58. 58.
    Balmer P, Devaney E. NK T cells are a source of early interleukin-4 following infection with third-stage larvae of the filarial nematode Brugia pahangi. Infect Immun 2002; 70:2215–2219.PubMedCrossRefGoogle Scholar
  59. 59.
    Koyama K. NK1.1 + cell depletion in vivo fails to prevent protection against infection with the murine nematode parasite Trichuris muris. Parasite Immunol 2002; 24:527–533.PubMedCrossRefGoogle Scholar
  60. 60.
    Pearce EJ, MacDonald AS. The immunobiology of schistosomiasis. Nat Rev Immunol 2002; 2:499–511.PubMedCrossRefGoogle Scholar
  61. 61.
    Faveeuw C, Angeli V, Fontaine J, Maliszewski C, Capron A, Van Kaer L, Moser M, Capron M, Trottein F. Antigen presentation by CD1d contributes to the amplification of Th2 responses to Schistosoma mansoni glycoconjugates in mice. J Immunol 2002; 169:906–912.PubMedGoogle Scholar
  62. 62.
    Okano M, Satoskar AR, Nishizaki K, Abe M, Harn DA, Jr. Induction of Th2 responses and IgE is largely due to carbohydrates functioning as adjuvants on Schistosoma mansoni egg antigens. J Immunol 1999; 163:6712–6717.PubMedGoogle Scholar
  63. 63.
    Mallevaey T, Fontaine J, Breuilh L, Paget C, Castro-Keller A, Vendeville C, Capron M, Leitede-Moraes M, Trottein F, Faveeuw C. Invariant and non-invariant Natural Killer T cells exert opposite regulatory functions on the immune response during murine schistosomiasis. Infect Immun 2007; 75(5):2171–2180.PubMedCrossRefGoogle Scholar
  64. 64.
    Zaccone P, Fehervari Z, Jones FM, Sidobre S, Kronenberg M, Dunne DW, Cooke A. Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol 2003; 33:1439–1449.PubMedCrossRefGoogle Scholar
  65. 65.
    Mallevaey T, Zanetta JP, Faveeuw C, Fontaine J, Maes E, Platt F, Capron M, de-Moraes ML, Trottein F. Activation of invariant NKT cells by the helminth parasite schistosoma mansoni. J Immunol 2006; 176:2476–2485.PubMedGoogle Scholar
  66. 66.
    Singh N, Hong S, Scherer DC, Serizawa I, Burdin N, Kronenberg M, Koezuka Y, Van Kaer L. Cutting edge: activation of NK T cells by CD1d and alpha-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 1999; 163:2373–2377.PubMedGoogle Scholar
  67. 67.
    Fujii S, Shimizu K, Kronenberg M, Steinman RM. Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol 2002; 3:867–874.PubMedCrossRefGoogle Scholar
  68. 68.
    Bezbradica JS, Stanic AK, Matsuki N, Bour-Jordan H, Bluestone JA, Thomas JW, Unutmaz D, Van Kaer L, Joyce S. Distinct roles of dendritic cells and B cells in Va14Ja18 natural T cell activation in vivo. J Immunol 2005; 174:4696–4705.PubMedGoogle Scholar
  69. 69.
    Schmieg J, Yang G, Franck RW, Van Rooijen N, Tsuji M. Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion. Proc Natl Acad Sci USA 2005; 102:1127–1132.PubMedCrossRefGoogle Scholar
  70. 70.
    Tupin E, Kinjo Y, Kronenberg M. The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 2007; 5:405–417.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christelle Faveeuw
    • 1
  • Thomas Roumier
    • 1
  • Monique Capron
    • 1
  • David Dombrowicz
    • 1
  1. 1.INSERM U547Université Lille 2. Institut Pasteur de Lille Unité Inserm U547, Institut Pasteur de LilleLille CedexFrance

Personalised recommendations