A Methodological Framework to Quantify Anthropogenic Effects on Landscape Patterns

  • Jan Bogaert
  • Yao Sabas S. Barima
  • Jian Ji
  • Hong Jiang
  • Issouf Bamba
  • Léon Iyongo Waya Mongo
  • Adi Mama
  • Edgar Nyssen
  • Farid Dahdouh-Guebas
  • Nico Koedam
Part of the Ecological Research Monographs book series (ECOLOGICAL)


From an ecological landscape perspective, cultural landscapes can be considered as “anthropized” landscapes, in which patterns and processes are altered by human intervention. The importance of the study of spatial patterns in landscapes is justified by the pattern/process paradigm. The emergent properties of patterns reflect two components: landscape composition, which describes the number of patch types as well as their abundance, and landscape configuration, which refers to the spatial arrangement of the patch types. In this chapter, methods and strategies to analyze spatial pattern and landscape dynamics are discussed, and emphasis is put on the detection and quantification of anthropogenic effects on landscapes. Land mosaics showing anthropogenic effects are characterized by fragmented natural land cover, high frequencies of edge habitat, simple patch geometry, and dominant proportions of anthropogenic patch types. Landscape transformations associated with “anthropization” lead to a disintegration of natural patch types and to a reinforcement of anthropogenic ones. Four techniques to measure anthropogenic effects on pattern are discussed (1) the quantification of the fragmentation of natural habitats and its interpretation in terms of diversity, heterogeneity and entropy, (2) the quantification of edge effects in order to measure the ecological impact of human activity, (3) the determination of patch fractal dimensions to detect pattern simplification, and (4) the determination of the landscape transformation processes responsible for pattern dynamics. At the end of the chapter, a short list of analysis methods and strategies is proposed for detecting and measuring landscape “anthropization.”


Land Cover Patch Size Land Cover Change Land Cover Type Landscape Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the government of Ivory Coast for the fellowships of I. Bamba and Y.S.S. Barima. BTC/CTB is acknowledged for the fellowship of L. Iyongo Waya Mongo. This publication was made possible by a research grant from the Fund for Scientific Research – Flanders “Dynamiek in diversiteit, functionaliteit en stabiliteit van mangroven, benaderd vanuit een retrospectieve en actuele teledetectie-aanpak m.b.v. nieuwe patroonherkenningstechnieken.”


  1. Addison PS (1997) Fractals and chaos. An illustrated course. Institute of Physics Publishing, Bristol and PhiladelphiaCrossRefGoogle Scholar
  2. Allen TFH, Starr TB (1982) Hierarchy: perspectives for ecological complexity. University of Chicago Press, ChicagoGoogle Scholar
  3. Alongo Longomba S (2007) Etude de l’effet des lisières sur l’humidité équivalente et la température du sol d’un écosystème forestier de la cuvette centrale congolaise. Mémoire présenté en vue de l’obtention du DEA en Gestion de la biodiversité, Université de KisanganiGoogle Scholar
  4. Antrop M (2001) The language of landscape ecologists and planners – a comparative content analysis of concepts used in landscape ecology. Landsc Urban Plan 55:163–173CrossRefGoogle Scholar
  5. August P, Iverson L, Nugranad J (2002) Human conversion of terrestrial habitats. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, New YorkGoogle Scholar
  6. Baker WL, Cai Y (1992) The r.le programs for multi-scale analysis of landscape structure using the GRASS geographical information system. Landsc Ecol 7:291–302CrossRefGoogle Scholar
  7. Bamba I, Mama A, Neuba DFR et al (2008) Influence des actions anthropiques sur la dynamique spatio-temporelle de l’occupation du sol dans la province du Bas-Congo (R.D. Congo). Sci Nat 5(1):49–60Google Scholar
  8. Bamba I, Iyongo Waya Mongo L, Imre A et al (2009) La variabilité du facteur de graduation utilisé dans la méthode d’estimation de la dimension fractale des mosaïques paysagères. Ann Inst Supér Etu Agron Bengamisa 4:168–176Google Scholar
  9. Barima YSS, Barbier N, Bamba I et al (2009) Dynamique paysagère en milieu de transition forêt-savane ivoirienne. Bois For Trop 299:15–25Google Scholar
  10. Baskent EZ, Jordan GA (1995) Characterizing spatial structure of forest landscapes. Can J For Res 25:1830–1849CrossRefGoogle Scholar
  11. Bogaert J (2005) Metriche del paesaggio: definizioni ed utilizzo. Estimo e Territorio 68(9):8–15Google Scholar
  12. Bogaert J, Hong SK (2004) Landscape ecology: monitoring landscape dynamics using spatial pattern metrics. In: Hong SK, Lee JA, Ihm BS et al (eds) Ecological issues in a changing world. Status, response and strategy. Kluwer, DordrechtGoogle Scholar
  13. Bogaert J, Mahamane A (2005) Ecologie du paysage: cibler la configuration et l’échelle spatiale. Ann Sci Agron Bénin 7(1):1–15Google Scholar
  14. Bogaert J, Rousseau R, Van Hecke P et al (2000) Alternative area–perimeter ratios for measurement of 2-D shape compactness of habitats. Appl Math Comput 111:71–85CrossRefGoogle Scholar
  15. Bogaert J, Salvador-Van Eysenrode D, Impens I et al (2001a) The interior-to-edge breakpoint distance as a guideline for nature conservation policy. Environ Manage 27:493–500PubMedCrossRefGoogle Scholar
  16. Bogaert J, Salvador-Van Eysenrode D, Van Hecke P et al (2001b) Geometrical considerations for evaluation of reserve design. Web Ecol 2:65–70, Erratum. Web Ecol 2:74Google Scholar
  17. Bogaert J, Myneni RB, Knyazikhin Y (2002a) A mathematical comment on the formulae for the aggregation index and the shape index. Landsc Ecol 17:87–90CrossRefGoogle Scholar
  18. Bogaert J, Zhou L, Tucker CJ et al (2002b) Evidence for a persistent and extensive greening trend in Eurasia inferred from satellite vegetation index data. J Geophys Res 107:14. doi: 10.1029/2001JD001075 CrossRefGoogle Scholar
  19. Bogaert J, Ceulemans R, Salvador-Van Eysenrode D (2004) A decision tree algorithm for detection of spatial processes in landscape transformation. Environ Manage 33:62–73PubMedCrossRefGoogle Scholar
  20. Bogaert J, Farina A, Ceulemans R (2005) Entropy increase of fragmented habitats signals human impact. Ecol Indic 5:207–212CrossRefGoogle Scholar
  21. Bogaert J, Bamba I, Koffi KJ et al (2008) Fragmentation of forest landscapes in Central Africa: causes, consequences and management. In: Lafortezza R, Chen J, Sanesi G et al (eds) Pattern and processes in forest landscapes. Multiple use and sustainable management. Springer, New YorkGoogle Scholar
  22. Bribiesca E (1997) Measuring 2D shape compactness using the contact perimeter. Comput Math Appl 33:1–9CrossRefGoogle Scholar
  23. Burel F, Baudry J (2003) Ecologie du paysage. Concepts, méthodes et applications. Editions Tec&Doc, ParisGoogle Scholar
  24. Burrough PA (1986) Principles of geographic information systems for land resources assessment. Oxford University Press, OxfordGoogle Scholar
  25. Chen J (1991) Edge effects: microclimatic pattern and biological responses in old-growth Douglas-fir forests. PhD dissertation, University of WashingtonGoogle Scholar
  26. Cheng Q (1995) The perimeter–area fractal model and its application to geology. Math Geol 27:69–82CrossRefGoogle Scholar
  27. Collinge SK (1998) Spatial arrangement of habitat patches and corridors: clues from ecological field experiments. Landsc Urban Plan 42:157–168CrossRefGoogle Scholar
  28. Collinge SK, Forman RTT (1998) A conceptual model of land conversion processes: predictions and evidence from a microlandscape experiment with grassland insects. Oikos 82:66–84CrossRefGoogle Scholar
  29. Colson F, Bogaert J, Ceulemans R (2005) Spatial pattern analysis to address reliability issues in remotely sensed data. In: Veroustraete F, Bartholomé E, Verstraeten WW (eds) Proceedings of the second international spot/vegetation users conference. Office for Official Publications of the European Communities, LuxemburgGoogle Scholar
  30. Coulson RN, Saarenmaa H, Daugherty WC et al (1999) A knowledge system environment for ecosystem management. In: Klopatek JM, Gardner RH (eds) Landscape ecological analysis. Issues and applications. Springer, BerlinGoogle Scholar
  31. Dahdouh-Guebas F, Verheyden A, De Genst W et al (2000) Four decade vegetation dynamics in Sri Lankan mangroves as detected from sequential aerial photography: a case study in Galle. Bull Mar Sci 67:741–759Google Scholar
  32. De Cola L (1989) Fractal analysis of a classified Landsat scene. Photogramm Eng Rem S 55:601–610Google Scholar
  33. De Smet K (2005) Spatio-temporal dynamics of mangroves detected using aerial photography, Ikonos satellite imagery and fieldwork in Galle-Unawatuna, Sri Lanka. Thesis submitted in fulfilment of the requirements for the degree of Licentiaat Biologie, Vrije Universiteit BrusselGoogle Scholar
  34. FAO (2006) Global forest resources assessment of 2005. Progress towards sustainable forest management, vol 147, FAO forestry paper. FAO, RomeGoogle Scholar
  35. Farina A (2000a) Landscape ecology in action. Kluwer, DordrechtCrossRefGoogle Scholar
  36. Farina A (2000b) Principles and methods in landscape ecology. Kluwer, DordrechtGoogle Scholar
  37. Forman RTT (1995) Land mosaics. The ecology of landscapes and regions. Cambridge University Press, CambridgeGoogle Scholar
  38. Forman RTT, Godron M (1986) Landscape ecology. Wiley, New YorkGoogle Scholar
  39. Frohn RC (1998) Remote sensing for landscape ecology. New metric indicators for monitoring, modelling, and assessment of ecosystems. Lewis Publishers, Boca RatonGoogle Scholar
  40. Giles RH Jr, Trani MK (1999) Key elements of landscape pattern measures. Environ Manage 23:477–481CrossRefGoogle Scholar
  41. Groom MJ, Schumaker N (1993) Evaluating landscape change: patterns of worldwide deforestation and local fragmentation. In: Kareiva PM, Kingsolver JG, Huey RB (eds) Biotic interactions and global change. Sinauer, SunderlandGoogle Scholar
  42. Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art. Ecosystems 1:143–156CrossRefGoogle Scholar
  43. Gustafson EJ, Diaz N (2002) Landscape pattern, timber extraction, and biological conservation. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, New YorkGoogle Scholar
  44. Halley JM, Hartley S, Kallimanis AS et al (2004) Uses and abuses of fractal methodology in ecology. Ecol Lett 7:254–271CrossRefGoogle Scholar
  45. Hilty JA, Lidicker WZ Jr, Merenlender AM (2006) Corridor ecology. The science and practice of linking landscapes for biodiversity conservation. Island Press, WashingtonGoogle Scholar
  46. Hobbs RJ (2002) Habitat networks and biological conservation. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, New YorkGoogle Scholar
  47. Hu J, Bogaert J, Tan B et al (2008) A rank-based algorithm for aggregating land cover maps. In: Dupont A, Jacobs H (eds) Landscape ecology research trends. Nova Science, New YorkGoogle Scholar
  48. Imre A (2006) Artificial fractal dimension obtained by using perimeter area relationship on digitalized images. Appl Math Comput 173:443–449CrossRefGoogle Scholar
  49. Imre AR, Bogaert J (2004) The fractal dimension as a measure of the quality of habitats. Acta Biotheor 52:41–56PubMedCrossRefGoogle Scholar
  50. Iyongo Waya Mongo L (2008) Etude des effets de lisière sur les populations de rongeurs dans la reserve forestière de Masako. Mémoire présenté en vue de l’obtention du DEA en Sciences de la vie – Biologie végétale, Université libre de BruxellesGoogle Scholar
  51. Jaeger J (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landsc Ecol 15:115–130CrossRefGoogle Scholar
  52. Ji J, Jiang H, Yang W (2008) National policy’s influence on Baoxing county’s landscape patterns and Giant Panda population. In: Chen J, Lui S, Lucas R et al (eds) Proceedings of the international conference “Landscape ecology and forest management”, IUFRO8.01.02, ChengduGoogle Scholar
  53. Johnsson K (1995) Fragmentation index as a region based GIS operator. Int J Geogr Inf Syst 9:211–220CrossRefGoogle Scholar
  54. Kabulu Djibu JP, Bamba I, Munyemba F et al (2008) Analyse de la structure spatiale des forêts au Katanga. Ann Fac Sci Agron Univ Lubumbashi I(2):12–18Google Scholar
  55. Kenkel NC, Walker DJ (1996) Fractals in the biological sciences. Coenoses 11:77–100Google Scholar
  56. Koffi KJ, Deblauwe V, Sibomana S et al (2007) Spatial pattern analysis as a focus of landscape ecology to support evaluation of human impact on landscapes and diversity. In: Hong SK, Nakagoshi N, Fu B et al (eds) Landscape ecological applications in man-influenced areas. Linking man and nature systems. Springer, DordrechtGoogle Scholar
  57. Krummel JR, Gardner RH, Sugihara G et al (1987) Landscape patterns in a disturbed environment. Oikos 48:321–324CrossRefGoogle Scholar
  58. Li H, Reynolds JF (1994) A simulation experiment to quantify spatial heterogeneity in categorical maps. Ecology 75:2446–2455CrossRefGoogle Scholar
  59. Li H, Wu J (2004) Use and misuse of landscape indices. Landsc Ecol 19:389–399CrossRefGoogle Scholar
  60. Litucha Bakokola Makeu J (2007) Etude de l’effet de lisière sur le microclimat thermique d’un écosystème forestier de la cuvette centrale congolaise. Mémoire présenté en vue de l’obtention du DEA en Gestion de la biodiversité, Université de KisanganiGoogle Scholar
  61. Lokonda O. Wa Kipifo M (2007) Etude de l’effet de lisière sur la réaction ou pH du sol dans un paysage fragmenté de la cuvette centrale congolaise. Mémoire présenté en vue de l’obtention du DEA en Gestion de la biodiversité, Université de KisanganiGoogle Scholar
  62. Lovejoy S (1982) Area–perimeter relation for rain and cloud areas. Science 216:185–187PubMedCrossRefGoogle Scholar
  63. Magurran AE (2004) Measuring biological diversity. Blackwell, OxfordGoogle Scholar
  64. Mandelbrot BB (1983) The fractal geometry of nature. Freeman and Company, New YorkGoogle Scholar
  65. McGarigal K, Cushman SA, Neel MC et al (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced at the University of Massachusetts, Amherst. Available at the following web site:
  66. McIntyre S, Hobbs RJ (1999) A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conserv Biol 13:1282–1292CrossRefGoogle Scholar
  67. Monmonier MS (1974) Measures of pattern complexity for choroplethic maps. Am Cartogr 1:159–169CrossRefGoogle Scholar
  68. Naiman RJ, Holland MM, Decamps H et al (1988) A new UNESCO program: research and management of land: inland water ecotones. Biol Int 17:107–136Google Scholar
  69. Noon BR, Dale V (2002) Broad-scale ecological science and its application. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, New YorkGoogle Scholar
  70. O’Neill RV, Krummel JR, Gardner RH et al (1988) Indices of landscape pattern. Landsc Ecol 3:153–162CrossRefGoogle Scholar
  71. Odum HT (1983) Systems ecology: an introduction. Wiley, New YorkGoogle Scholar
  72. Olsen ER, Ramsey RD, Winn DS (1993) A modified fractal dimension as a measure of landscape diversity. Photogramm Eng Rem S 59:1517–1520Google Scholar
  73. Parks PJ (1991) Models of forested and agricultural landscapes: integrating economics. In: Turner MG, Gardner RH (eds) Quantitative methods in landscape ecology. Springer, New YorkGoogle Scholar
  74. Patton DR (1975) A diversity index for quantifying habitat “edge”. Wildlife Soc B 3:171–173Google Scholar
  75. Ricotta C, Olsen ER, Ramsey RD et al (1997) A generalized non-regression technique for evaluating fractal dimension of raster GIS layers consisting of non square cells. Coenoses 12:23–26Google Scholar
  76. Robinson JA, McRay B, Lulla KP (2000) Twenty-eight years of urban growth in North America quantified by analysis of photographs from Apollo, Skylab and Shuttle-Mir. In: Lulla KP, Dessinov LV (eds) Dynamic earth environments: remote sensing observations from shuttle-Mir missions. Wiley, New YorkGoogle Scholar
  77. Rosenfeld A (1974) Compact figures in digital pictures. IEEE Trans Syst Man Cyb 4:221–223Google Scholar
  78. Salvador-Van Eysenrode D, Bogaert J, Van Hecke P et al (1998) Influence of tree-fall orientation on canopy gap shape in an Ecuadorian rain forest. J Trop Ecol 14:865–869CrossRefGoogle Scholar
  79. Salvador-Van Eysenrode D, Bogaert J, Van Hecke P et al (2000) Forest canopy perforation in time and space in Amazonian Ecuador. Acta Oecol 21:285–291CrossRefGoogle Scholar
  80. Saura S, Torras O, Gil-Tena A et al (2008) Shape irregularity as an indicator of forest biodiversity and guidelines for metrics selection. In: Lafortezza R, Chen J, Sanesi G et al (eds) Pattern and processes in forest landscapes. Multiple use and sustainable management. Springer, New YorkGoogle Scholar
  81. Smith RL, Smith TM (2000) Elements of ecology. Benjamin Cummings Science Publishing, San FranciscoGoogle Scholar
  82. Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197CrossRefGoogle Scholar
  83. Turner MG, Dale V (1991) Modeling landscape disturbance. In: Turner MG, Gardner RH (eds) Quantitative methods in landscape ecology. Springer, New YorkCrossRefGoogle Scholar
  84. Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice. Pattern and process. Springer Science+Business Media Inc., New YorkGoogle Scholar
  85. Urban DL, Wallin DO (2002) Introduction to Markov models. In: Gergel SE, Turner MG (eds) Learning landscape ecology. A practical guide to concepts and techniques. Springer, New YorkGoogle Scholar
  86. Urban DL, O’Neill RV, Shugart HH Jr (1987) Landscape ecology. A hierarchical perspective can help scientists understand spatial patterns. Bioscience 37:119–127CrossRefGoogle Scholar
  87. Voss RF (1988) Fractals in nature: from characterization to simulation. In: Peitgen HO, Saupe D (eds) The science of fractal images. Springer, New YorkGoogle Scholar
  88. Wu D (2007) Development and implementation of image processing algorithms related to the estimation of the interior-to-edge ratio. Thesis submitted in partial fulfilment of the requirements for the Master’s degree of Applied Computer Science, Vrije Universiteit BrusselGoogle Scholar
  89. Wu J, Hobbs RJ (2007) Landscape ecology: the state-of-the-science. In: Wu J, Hobbs RJ (eds) Key topics in landscape ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Jan Bogaert
    • 1
  • Yao Sabas S. Barima
    • 1
  • Jian Ji
    • 2
    • 3
  • Hong Jiang
    • 2
  • Issouf Bamba
    • 1
  • Léon Iyongo Waya Mongo
    • 1
  • Adi Mama
    • 1
  • Edgar Nyssen
    • 4
  • Farid Dahdouh-Guebas
    • 5
    • 6
  • Nico Koedam
    • 6
  1. 1.Service d’Ecologie du Paysage et Systèmes de Production VégétaleUniversité Libre de BruxellesBruxellesBelgium
  2. 2.Nanjing UniversityNanjingChina
  3. 3.Chengdu University of TechnologyChengduChina
  4. 4.Vrije Universiteit Brussel, Vakgroep Elektronica en InformaticaBrusselBelgium
  5. 5.Laboratoire de Complexité et Dynamique des Systèmes TropicauxUniversité Libre de BruxellesBruxellesBelgium
  6. 6.Onderzoeksgroep Algemene Plantkunde en NatuurbeheerVrije Universiteit BrusselBrusselBelgium

Personalised recommendations