Gene Interactions Between Krüppel-like Factors in Development

  • Joyce A. Lloyd


Krüppel-like factors (KLFs) are transcription factors involved in differentiation and development. EKLF (or KLF1), KLF2, and KLF4 belong to a subclass of KLFs that are similar in regard to their zinc finger DNA-binding domains. EKLF knockout (KO) mouse embryos die between embryonic day 14.5 (E14.5) and E16.5 due to anemia. KLF2 KO embryos die between E12.5 and E14.5 and exhibit heart failure and hemorrhaging. KLF4 KO mice die perinatally owing to a loss of skin-barrier function. EKLF is expressed in erythroid cells, but KLF2 and KLF4 are expressed in multiple tissues. Our laboratory has analyzed compound mutant embryos for EKLF and KLF2 and for KLF2 and KLF4. The double KO embryos have more severe erythroid and/or cardiovascular defects and die earlier than do single knockouts. This indicates that there are interactions between these pairs of KLF genes during development. The phenotypes of the compound mutants and the possible mechanisms for KLF gene interactions are discussed.


Gene Interaction Globin Gene Erythroid Cell KLF2 mRNA Globin Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alder JK, Georgantas RW III, Hildreth RL et al (2008) Krüppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol 180:5645–5652PubMedGoogle Scholar
  2. Basu P, Lung TK, Lemsaddek W et al (2007) EKLF and KLF2 have compensatory roles in embryonic beta-globin gene expression and primitive erythropoiesis. Blood 110:3417–3425PubMedCrossRefGoogle Scholar
  3. Basu P, Morris PE, Haar JL et al (2005) KLF2 is essential for primitive erythropoiesis and regulates the human and murine embryonic beta-like globin genes. Blood 106:2566–2571PubMedCrossRefGoogle Scholar
  4. Basu P, Sargent TG, Redmond LC et al (2004) Evolutionary conservation of KLF transcription factors and functional conservation of human gamma-globin gene regulation in chicken. Genomics 84:311–319PubMedCrossRefGoogle Scholar
  5. Bieker JJ (2001) Krüppel-like factors: three fingers in many pies. J Biol Chem 276:34355–34358PubMedCrossRefGoogle Scholar
  6. Boulet AM and Capecchi MR (2004) Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development 131:299–309PubMedCrossRefGoogle Scholar
  7. Carlson CM, Endrizzi BT, Wu J et al (2006) Krüppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442:299–302PubMedCrossRefGoogle Scholar
  8. Chervenak AP, Basu P, Shin M et al (2006) Identification, characterization, and expression pattern of the chicken EKLF gene. Dev Dyn 235:1933–1940PubMedCrossRefGoogle Scholar
  9. Coghill E, Eccleston S, Fox V et al (2001) Erythroid Krüppel-like factor (EKLF) coordinates erythroid cell proliferation and hemoglobinization in cell lines derived from EKLF null mice. Blood 97:1861–1868PubMedCrossRefGoogle Scholar
  10. Crossley M, Whitelaw E, Perkins A et al (1996) Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells. Mol Cell Biol 16:1695–1705PubMedGoogle Scholar
  11. Dang DT, Zhao W, Mahatan CS et al (2002) Opposing effects of Krüppel-like factor 4 (gut-enriched Krüppel-like factor) and Krüppel-like factor 5 (intestinal-enriched Krüppel-like factor) on the promoter of the Krüppel-like factor 4 gene. Nucleic Acids Res 30:2736–2741PubMedCrossRefGoogle Scholar
  12. Das H, Kumar A, Lin Z et al (2006) Krüppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc Natl Acad Sci U S A 103:6653–6658PubMedCrossRefGoogle Scholar
  13. Donze D, Townes TM, and Bieker JJ (1995) Role of erythroid Krüppel-like factor in human gamma- to beta-globin gene switching. J Biol Chem 270:1955–1959PubMedCrossRefGoogle Scholar
  14. Drissen R, von Lindern M Kolbus A et al (2005) The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol 25:5205–5214PubMedCrossRefGoogle Scholar
  15. Feinberg MW, Cao Z, Wara AK et al (2005) Krüppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J Biol Chem 280:38247–38258PubMedCrossRefGoogle Scholar
  16. Fromental-Ramain C, Warot X, Messadecq N et al (1996) Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development 122:2997–3011PubMedGoogle Scholar
  17. Fujiwara Y, Chang AN, Williams AM, and Orkin SH (2004) Functional overlap of GATA-1 and GATA-2 in primitive hematopoietic development. Blood 103:583–585PubMedCrossRefGoogle Scholar
  18. Funnell AP, Maloney CA, Thompson LJ et al (2007) Erythroid Krüppel-like factor directly activates the basic Krüppel-like factor gene in erythroid cells. Mol Cell Biol 27:2777–2790PubMedCrossRefGoogle Scholar
  19. Galceran J, Farinas I, Depew MJ et al (1999) Wnt3a−/∔like phenotype and limb deficiency in Lef1(−/−)Tcf1(−/−) mice. Genes Dev 13:709–717PubMedCrossRefGoogle Scholar
  20. Garrett-Sinha LA, Su GH, Rao S et al (1999) PU.1 and Spi-B are required for normal B cell receptor-mediated signal transduction. Immunity 10:399–408PubMedCrossRefGoogle Scholar
  21. Ghaleb AM, Nandan MO, Chanchevalap S et al (2005) Krüppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res 15:92–96PubMedCrossRefGoogle Scholar
  22. Gregorieff A, Grosschedl R, and Clevers H (2004) Hindgut defects and transformation of the gastro-intestinal tract in Tcf4(−/−)/Tcf1(−/−) embryos. EMBO J 23:1825–1833PubMedCrossRefGoogle Scholar
  23. Hamik A, Lin Z, Kumar A et al (2007) Krüppel-like factor 4 regulates endothelial inflammation. J Biol Chem 282:13769–13779PubMedCrossRefGoogle Scholar
  24. Hodge D, Coghill E, Keys J et al (2006) A global role for EKLF in definitive and primitive erythropoiesis. Blood 107:3359–3370PubMedCrossRefGoogle Scholar
  25. Hsu SH, Noamani B, Abernethy DE et al (2006) Dlx5- and Dlx6-mediated chondrogenesis: Differential domain requirements for a conserved function. Mech Dev 123:819–830PubMedCrossRefGoogle Scholar
  26. Jiang J, Chan YS, Loh YH et al (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10:353–360PubMedCrossRefGoogle Scholar
  27. Kaczynski J, Cook T, and Urrutia R (2003) Sp1- and Krüppel-like transcription factors. Genome Biol. doi: 10.1186/gb-2003–4-2-206Google Scholar
  28. Kuo CT, Veselits ML, Barton KP et al (1997a) The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 11:2996–3006CrossRefGoogle Scholar
  29. Kuo CT, Veselits ML, and Leiden JM (1997b) LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science 277:1986–1990CrossRefGoogle Scholar
  30. Lee JS, Yu Q, Shin JT et al (2006) Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev Cell 11:845–857PubMedCrossRefGoogle Scholar
  31. Liu Y, Sinha S, McDonald OG et al (2005) Krüppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem 280:9719–9727PubMedCrossRefGoogle Scholar
  32. Matsumoto N, Kubo A, Liu H et al (2006) Developmental regulation of yolk sac hematopoiesis by Krüppel-like factor 6. Blood 107:1357–1365PubMedCrossRefGoogle Scholar
  33. Miller IJ and Bieker JJ (1993) A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol Cell Biol 13:2776–2786PubMedGoogle Scholar
  34. Nuez B, Michalovich, D, Bygrave, A et al (1995) Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 375:316–318PubMedCrossRefGoogle Scholar
  35. Perkins AC, Sharpe AH, and Orkin SH (1995) Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375:318–322PubMedCrossRefGoogle Scholar
  36. Peters H, Wilm B, Sakai N et al (1999) Pax1 and Pax9 synergistically regulate vertebral column development. Development 126:5399–5408PubMedGoogle Scholar
  37. Philipsen S and Suske G (1999) A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res 27:2991–3000PubMedCrossRefGoogle Scholar
  38. Rawls A, Valdez MR, Zhang W et al (1998) Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development 125:2349–2358PubMedGoogle Scholar
  39. Sawada A, Kiyonari H, Ukita K et al (2008) Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival. Mol Cell Biol 28:3177–3189PubMedCrossRefGoogle Scholar
  40. Segre JA, Bauer C, and Fuchs E (1999) Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet 22:356–360PubMedCrossRefGoogle Scholar
  41. SenBanerjee S, Lin Z, Atkins GB et al (2004) KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199:1305–1315PubMedCrossRefGoogle Scholar
  42. Seo S and Kume T (2006) Forkhead transcription factors, Foxc1 and Foxc2, are required for the morphogenesis of the cardiac outflow tract. Dev Biol 296:421–436PubMedCrossRefGoogle Scholar
  43. Southwood CM, Downs KM, and Bieker JJ (1996) Erythroid Krüppel-like factor exhibits an early and sequentially localized pattern of expression during mammalian erythroid ontogeny. Dev Dyn 206:248–259PubMedCrossRefGoogle Scholar
  44. Suzuki T, Aizawa K, Matsumura T, and Nagai R (2005) Vascular implications of the Krüppel-like family of transcription factors. Arterioscler Thromb Vasc Biol 25:1135–1141PubMedCrossRefGoogle Scholar
  45. Tanimoto K, Liu Q, Grosveld F et al (2000) Context-dependent EKLF responsiveness defines the developmental specificity of the human epsilon-globin gene in erythroid cells of YAC transgenic mice. Genes Dev 14:2778–2794PubMedCrossRefGoogle Scholar
  46. van den Akker E, Forlani S, Chawengsaksophak K et al (2002) Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation. Development 129:2181–2193PubMedGoogle Scholar
  47. Wani MA, Means RTJ, and Lingrel JB (1998) Loss of LKLF function results in embryonic lethality in mice. Transgenic Res 7:229–238PubMedCrossRefGoogle Scholar
  48. Wu J, Bohanan CS, Neumann JC, and Lingrel JB (2008) KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration. J Biol Chem 283:3942–3950PubMedCrossRefGoogle Scholar
  49. Zhang P, Basu P, Redmond LC et al (2005) A functional screen for Krüppel-like factors that regulate the human gamma-globin gene through the CACCC promoter element. Blood Cells, Molecules and Diseases 35:227–235CrossRefGoogle Scholar
  50. Zhang W and Bieker JJ (1998) Acetylation and modulation of erythroid Krüppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci U S A 95:9855–9860PubMedCrossRefGoogle Scholar
  51. Zhou D, Pawlik KM, Ren J et al (2006) Differential binding of erythroid Krüppel-like factor to embryonic/fetal globin gene promoters during development. J Biol Chem 281:16052–16057PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Joyce A. Lloyd
    • 1
  1. 1.Department of Human and Molecular Genetics and Massey Cancer CenterVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations