Developmental Expression of Krüppel-like Factors

  • Yizeng Yang
  • Jonathan P. Katz


Krüppel-like factors (KLFs) are members of an emerging family of DNA-binding transcriptional regulators with critical roles in development, differentiation, and a number of other key cellular processes. The KLF family contains at least 17 members, many with overlapping patterns of expression and function, and all linked by a similar DNA-binding element. During development, KLFs may function as transcriptional activators or repressors depending on the cell or tissue context or even the stage of development. Here, we provide a brief introduction to the expression patterns and established roles of the KLFs in development. By examining these patterns and functions, we uncover a number of themes that are explored in detail in ensuing chapters.


Zinc Finger Null Mouse Developmental Expression Zinc Finger Transcription Factor Klf5 mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, K. P., Kern, C. B., Crable, S. C., and Lingrel, J. B. (1995). Isolation of a gene encoding a functional zinc finger protein homologous to erythroid Kruppel-like factor: identification of a new multigene family. Mol Cell Biol 15, 5957–5965.PubMedGoogle Scholar
  2. Asano, H., Li, X. S., and Stamatoyannopoulos, G. (1999). FKLF, a novel Kruppel-like factor that activates human embryonic and fetal beta-like globin genes. Mol Cell Biol 19, 3571–3579.PubMedGoogle Scholar
  3. Behr, R., and Kaestner, K. H. (2002). Developmental and cell type-specific expression of the zinc finger transcription factor Kruppel-like factor 4 (KLF4) in postnatal mouse testis. Mech Dev 115, 167–169.PubMedCrossRefGoogle Scholar
  4. Bensamoun, S. F., Tsubone, T., Subramaniam, M., Hawse, J. R., Boumediene, E., Spelsberg, T. C., An, K. N., and Amadio, P. C. (2006). Age-dependent changes in the mechanical properties of tail tendons in TGF-beta inducible early gene-1 knockout mice. J Appl Physiol 101, 1419–1424.PubMedCrossRefGoogle Scholar
  5. Blanchon, L., Bocco, J. L., Gallot, D., Gachon, A. M., Lemery, D., Dechelotte, P., Dastugue, B., and Sapin, V. (2001). Co-localization of KLF6 and KLF4 with pregnancy-specific glycopro-teins during human placenta development. Mech Dev 105, 185–189.PubMedCrossRefGoogle Scholar
  6. Conkright, M. D., Wani, M. A., Anderson, K. P., and Lingrel, J. B. (1999). A gene encoding an intestinal-enriched member of the Kruppel-like factor family expressed in intestinal epithelial cells. Nucleic Acids Res 27, 1263–1270.PubMedCrossRefGoogle Scholar
  7. Cook, T., Gebelein, B., Mesa, K., Mladek, A., and Urrutia, R. (1998). Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta-inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth. J Biol Chem 273, 25929–25936.PubMedCrossRefGoogle Scholar
  8. Crossley, M., Whitelaw, E., Perkins, A., Williams, G., Fujiwara, Y., and Orkin, S. H. (1996). Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells. Mol Cell Biol 16, 1695–1705.PubMedGoogle Scholar
  9. D'Souza, U. M., Lammers, C. H., Hwang, C. K., Yajima, S., and Mouradian, M. M. (2002). Developmental expression of the zinc finger transcription factor DRRF (dopamine receptor regulating factor). Mech Dev 110, 197–201.PubMedCrossRefGoogle Scholar
  10. Denver, R. J., Ouellet, L., Furling, D., Kobayashi, A., Fujii-Kuriyama, Y., and Puymirat, J. (1999). Basic transcription element-binding protein (BTEB) is a thyroid hormone-regulated gene in the developing central nervous system. Evidence for a role in neurite outgrowth. J Biol Chem 274, 23128–23134.Google Scholar
  11. Drissen, R., von Lindern, M., Kolbus, A., Driegen, S., Steinlein, P., Beug, H., Grosveld, F., and Philipsen, S. (2005). The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol 25, 5205–5214.PubMedCrossRefGoogle Scholar
  12. Fisch, S., Gray, S., Heymans, S., Haldar, S. M., Wang, B., Pfister, O., Cui, L., Kumar, A., Lin, Z., Sen-Banerjee, S., et al. (2007). Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 104, 7074–7079.PubMedCrossRefGoogle Scholar
  13. Fischer, E. A., Verpont, M. C., Garrett-Sinha, L. A., Ronco, P. M., and Rossert, J. A. (2001). KLF6 is a zinc finger protein expressed in a cell-specific manner during kidney development. J Am Soc Nephrol 12, 726–735.PubMedGoogle Scholar
  14. Frontelo, P., Manwani, D., Galdass, M., Karsunky, H., Lohmann, F., Gallagher, P. G., and Bieker, J. J. (2007). Novel role for EKLF in megakaryocyte lineage commitment. Blood 110, 3871–3880.PubMedCrossRefGoogle Scholar
  15. Garrett-Sinha, L. A., Eberspaecher, H., Seldin, M. F., and de Crombrugghe, B. (1996). A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J Biol Chem 271, 31384–31390.PubMedCrossRefGoogle Scholar
  16. Gordon, A. R., Outram, S. V., Keramatipour, M., Goddard, C. A., Colledge, W. H., Metcalfe, J. C., Hager-Theodorides, A. L., Crompton, T., and Kemp, P. R. (2008). Splenomegaly and modified erythropoiesis in KLF13−/− mice. J Biol Chem 283, 11897–11904.PubMedCrossRefGoogle Scholar
  17. Gray, S., Feinberg, M. W., Hull, S., Kuo, C. T., Watanabe, M., Sen-Banerjee, S., DePina, A., Haspel, R., and Jain, M. K. (2002). The Kruppel-like factor KLF15 regulates the insulinsensitive glucose transporter GLUT4. J Biol Chem 277, 34322–34328.PubMedCrossRefGoogle Scholar
  18. Gray, S., Wang, B., Orihuela, Y., Hong, E. G., Fisch, S., Haldar, S., Cline, G. W., Kim, J. K., Peroni, O. D., Kahn, B. B., and Jain, M. K. (2007). Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab 5, 305–312.PubMedCrossRefGoogle Scholar
  19. Hawse, J. R., Iwaniec, U. T., Bensamoun, S. F., Monroe, D. G., Peters, K. D., Ilharreborde, B., Rajamannan, N. M., Oursler, M. J., Turner, R. T., Spelsberg, T. C., and Subramaniam, M. (2008). TIEG-null mice display an osteopenic gender-specific phenotype. Bone 42, 1025–1031.PubMedCrossRefGoogle Scholar
  20. Hwang, C. K., D'Souza, U. M., Eisch, A. J., Yajima, S., Lammers, C. H., Yang, Y., Lee, S. H., Kim, Y. M., Nestler, E. J., and Mouradian, M. M. (2001). Dopamine receptor regulating factor, DRRF: a zinc finger transcription factor. Proc Natl Acad Sci U S A 98, 7558–7563.PubMedCrossRefGoogle Scholar
  21. Imataka, H., Sogawa, K., Yasumoto, K., Kikuchi, Y., Sasano, K., Kobayashi, A., Hayami, M., and Fujii-Kuriyama, Y. (1992). Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene. EMBO J 11, 3663–3671.PubMedGoogle Scholar
  22. Imhof, A., Schuierer, M., Werner, O., Moser, M., Roth, C., Bauer, R., and Buettner, R. (1999). Transcriptional regulation of the AP-2alpha promoter by BTEB-1 and AP-2rep, a novel wt-1/ egr-related zinc finger repressor. Mol Cell Biol 19, 194–204.PubMedGoogle Scholar
  23. Jiang, J., Chan, Y. S., Loh, Y. H., Cai, J., Tong, G. Q., Lim, C. A., Robson, P., Zhong, S., and Ng, H. H. (2008). A core KLF circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10, 353–360.PubMedCrossRefGoogle Scholar
  24. Katz, J. P., Perreault, N., Goldstein, B. G., Lee, C. S., Labosky, P. A., Yang, V. W., and Kaestner, K. H. (2002). The zinc-finger transcription factor KLF4 is required for terminal differentiation of goblet cells in the colon. Development 129, 2619–2628.PubMedGoogle Scholar
  25. Koritschoner, N. P., Bocco, J. L., Panzetta-Dutari, G. M., Dumur, C. I., Flury, A., and Patrito, L. C. (1997). A novel human zinc finger protein that interacts with the core promoter element of a TATA box-less gene. J Biol Chem 272, 9573–9580.PubMedCrossRefGoogle Scholar
  26. Kuo, C. T., Veselits, M. L., Barton, K. P., Lu, M. M., Clendenin, C., and Leiden, J. M. (1997a). The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 11, 2996–3006.CrossRefGoogle Scholar
  27. Kuo, C. T., Veselits, M. L., and Leiden, J. M. (1997b). LKLF: A transcriptional regulator of singlepositive T cell quiescence and survival. Science 277, 1986–1990.CrossRefGoogle Scholar
  28. Laub, F., Aldabe, R., Friedrich, V., Jr., Ohnishi, S., Yoshida, T., and Ramirez, F. (2001a). Developmental expression of mouse Kruppel-like transcription factor KLF7 suggests a potential role in neurogenesis. Dev Biol 233, 305–318.CrossRefGoogle Scholar
  29. Laub, F., Aldabe, R., Ramirez, F., and Friedman, S. (2001b). Embryonic expression of Kruppel-like factor 6 in neural and non-neural tissues. Mech Dev 106, 167–170.CrossRefGoogle Scholar
  30. Laub, F., Lei, L., Sumiyoshi, H., Kajimura, D., Dragomir, C., Smaldone, S., Puche, A. C., Petros, T. J., Mason, C., Parada, L. F., and Ramirez, F. (2005). Transcription factor KLF7 is important for neuronal morphogenesis in selected regions of the nervous system. Mol Cell Biol 25, 5699–5711.PubMedCrossRefGoogle Scholar
  31. Lavallee, G., Andelfinger, G., Nadeau, M., Lefebvre, C., Nemer, G., Horb, M. E., and Nemer, M. (2006). The Kruppel-like transcription factor KLF13 is a novel regulator of heart development. EMBO J 25, 5201–5213.PubMedCrossRefGoogle Scholar
  32. Li, D., Yea, S., Li, S., Chen, Z., Narla, G., Banck, M., Laborda, J., Tan, S., Friedman, J. M., Friedman, S. L., and Walsh, M. J. (2005a). Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J Biol Chem 280, 26941–26952.CrossRefGoogle Scholar
  33. Li, Y., McClintick, J., Zhong, L., Edenberg, H. J., Yoder, M. C., and Chan, R. J. (2005b). Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor KLF4. Blood 105, 635–637.CrossRefGoogle Scholar
  34. Martin, K. M., Metcalfe, J. C., and Kemp, P. R. (2001). Expression of KLF9 and KLF13 in mouse development. Mech Dev 103, 149–151.PubMedCrossRefGoogle Scholar
  35. Matsumoto, N., Kubo, A., Liu, H., Akita, K., Laub, F., Ramirez, F., Keller, G., and Friedman, S. L. (2006). Developmental regulation of yolk sac hematopoiesis by Kruppel-like factor 6. Blood 107, 1357–1365.PubMedCrossRefGoogle Scholar
  36. Matsumoto, N., Laub, F., Aldabe, R., Zhang, W., Ramirez, F., Yoshida, T., and Terada, M. (1998). Cloning the cDNA for a new human zinc finger protein defines a group of closely related Kruppel-like transcription factors. J Biol Chem 273, 28229–28237.PubMedCrossRefGoogle Scholar
  37. McConnell, B. B., Ghaleb, A. M., Nandan, M. O., and Yang, V. W. (2007). The diverse functions of Kruppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays 29, 549–557.PubMedCrossRefGoogle Scholar
  38. Miller, I. J., and Bieker, J. J. (1993). A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol 13, 2776–2786.PubMedGoogle Scholar
  39. Morita, M., Kobayashi, A., Yamashita, T., Shimanuki, T., Nakajima, O., Takahashi, S., Ikegami, S., Inokuchi, K., Yamashita, K., Yamamoto, M., and Fujii-Kuriyama, Y. (2003). Functional analysis of basic transcription element binding protein by gene targeting technology. Mol Cell Biol 23, 2489–2500.PubMedCrossRefGoogle Scholar
  40. Nakamura, H., Edward, D. P., Sugar, J., and Yue, B. Y. (2007). Expression of Sp1 and KLF6 in the developing human cornea. Mol Vis 13, 1451–1457.PubMedGoogle Scholar
  41. Narla, G., Heath, K. E., Reeves, H. L., Li, D., Giono, L. E., Kimmelman, A. C., Glucksman, M. J., Narla, J., Eng, F. J., Chan, A. M., et al. (2001). KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294, 2563–2566.PubMedCrossRefGoogle Scholar
  42. Nuez, B., Michalovich, D., Bygrave, A., Ploemacher, R., and Grosveld, F. (1995). Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 375, 316–318.PubMedCrossRefGoogle Scholar
  43. Ogata, T., Kurabayashi, M., Hoshino, Y. I., Sekiguchi, K. I., Kawai-Kowase, K., Ishikawa, S., Morishita, Y., and Nagai, R. (2000). Inducible expression of basic transcription factor-binding protein 2 (BTEB2), a member of zinc finger family of transcription factors, in cardiac allograft vascular disease. Transplantation 70, 1653–1656.PubMedCrossRefGoogle Scholar
  44. Ohnishi, S., Laub, F., Matsumoto, N., Asaka, M., Ramirez, F., Yoshida, T., and Terada, M. (2000). Developmental expression of the mouse gene coding for the Kruppel-like transcription factor KLF5. Dev Dyn 217, 421–429.PubMedCrossRefGoogle Scholar
  45. Oishi, Y., Manabe, I., Tobe, K., Tsushima, K., Shindo, T., Fujiu, K., Nishimura, G., Maemura, K., Yamauchi, T., Kubota, N., et al. (2005). Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 1, 27–39.PubMedCrossRefGoogle Scholar
  46. Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317.PubMedCrossRefGoogle Scholar
  47. Panigada, M., Porcellini, S., Sutti, F., Doneda, L., Pozzoli, O., Consalez, G. G., Guttinger, M., and Grassi, F. (1999). GKLF in thymus epithelium as a developmentally regulated element of thymocyte-stroma cross-talk. Mech Dev 81, 103–113.PubMedCrossRefGoogle Scholar
  48. Parisi, S., Passaro, F., Aloia, L., Manabe, I., Nagai, R., Pastore, L., and Russo, T. (2008). KLF5 is involved in self-renewal of mouse embryonic stem cells. J Cell Sci.Google Scholar
  49. Parker-Katiraee, L., Carson, A. R., Yamada, T., Arnaud, P., Feil, R., Abu-Amero, S. N., Moore, G. E., Kaneda, M., Perry, G. H., Stone, A. C., et al. (2007). Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution. PLoS Genet 3, e65–000.PubMedCrossRefGoogle Scholar
  50. Perkins, A. C., Sharpe, A. H., and Orkin, S. H. (1995). Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375, 318–322.PubMedCrossRefGoogle Scholar
  51. Rajamannan, N. M., Subramaniam, M., Abraham, T. P., Vasile, V. C., Ackerman, M. J., Monroe, D. G., Chew, T. L., and Spelsberg, T. C. (2007). TGFbeta inducible early gene-1 (TIEG1) and cardiac hypertrophy: Discovery and characterization of a novel signaling pathway. J Cell Biochem 100, 315–325.PubMedCrossRefGoogle Scholar
  52. Ratziu, V., Lalazar, A., Wong, L., Dang, Q., Collins, C., Shaulian, E., Jensen, S., and Friedman, S. L. (1998). Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc Natl Acad Sci U S A 95, 9500–9505.PubMedCrossRefGoogle Scholar
  53. Scohy, S., Gabant, P., Van Reeth, T., Hertveldt, V., Dreze, P. L., Van Vooren, P., Riviere, M., Szpirer, J., and Szpirer, C. (2000). Identification of KLF13 and KLF14 (SP6), novel members of the SP/XKLF transcription factor family. Genomics 70, 93–101.PubMedCrossRefGoogle Scholar
  54. Segre, J. A., Bauer, C., and Fuchs, E. (1999). KLF4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet 22, 356–360.PubMedCrossRefGoogle Scholar
  55. Shields, J. M., Christy, R. J., and Yang, V. W. (1996). Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem 271, 20009–20017.PubMedCrossRefGoogle Scholar
  56. Shindo, T., Manabe, I., Fukushima, Y., Tobe, K., Aizawa, K., Miyamoto, S., Kawai-Kowase, K., Moriyama, N., Imai, Y., Kawakami, H., et al. (2002). Kruppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. Nat Med 8, 856–863.PubMedGoogle Scholar
  57. Shinoda, Y., Ogata, N., Higashikawa, A., Manabe, I., Shindo, T., Yamada, T., Kugimiya, F., Ikeda, T., Kawamura, N., Kawasaki, Y., et al. (2008). Kruppel-like factor 5 causes cartilage degradation through transactivation of matrix metalloproteinase 9. J Biol Chem.Google Scholar
  58. Simmen, F. A., Xiao, R., Velarde, M. C., Nicholson, R. D., Bowman, M. T., Fujii-Kuriyama, Y., Oh, S. P., and Simmen, R. C. (2007). Dysregulation of intestinal crypt cell proliferation and villus cell migration in mice lacking Kruppel-like factor 9. Am J Physiol Gastrointest Liver Physiol 292, G1757–1769.PubMedCrossRefGoogle Scholar
  59. Simmen, R. C., Eason, R. R., McQuown, J. R., Linz, A. L., Kang, T. J., Chatman, L., Jr., Till, S. R., Fujii-Kuriyama, Y., Simmen, F. A., and Oh, S. P. (2004). Subfertility, uterine hypoplasia, and partial progesterone resistance in mice lacking the Kruppel-like factor 9/basic transcription element-binding protein-1 (Bteb1) gene. J Biol Chem 279, 29286–29294.PubMedCrossRefGoogle Scholar
  60. Sogawa, K., Imataka, H., Yamasaki, Y., Kusume, H., Abe, H., and Fujii-Kuriyama, Y. (1993). cDNA cloning and transcriptional properties of a novel GC box-binding protein, BTEB2. Nucleic Acids Res 21, 1527–1532.PubMedCrossRefGoogle Scholar
  61. Song, A., Chen, Y. F., Thamatrakoln, K., Storm, T. A., and Krensky, A. M. (1999). RFLAT-1: a new zinc finger transcription factor that activates RANTES gene expression in T lymphocytes. Immunity 10, 93–103.PubMedCrossRefGoogle Scholar
  62. Song, C. Z., Gavriilidis, G., Asano, H., and Stamatoyannopoulos, G. (2005). Functional study of transcription factor KLF11 by targeted gene inactivation. Blood Cells Mol Dis 34, 53–59.PubMedCrossRefGoogle Scholar
  63. Subramaniam, M., Gorny, G., Johnsen, S. A., Monroe, D. G., Evans, G. L., Fraser, D. G., Rickard, D. J., Rasmussen, K., van Deursen, J. M., Turner, R. T., et al. (2005). TIEG1 null mouse-derived osteoblasts are defective in mineralization and in support of osteoclast differentiation in vitro. Mol Cell Biol 25, 1191–1199.PubMedCrossRefGoogle Scholar
  64. Subramaniam, M., Harris, S. A., Oursler, M. J., Rasmussen, K., Riggs, B. L., and Spelsberg, T. C. (1995). Identification of a novel TGF-beta-regulated gene encoding a putative zinc finger protein in human osteoblasts. Nucleic Acids Res 23, 4907–4912.PubMedCrossRefGoogle Scholar
  65. Subramaniam, M., Hefferan, T. E., Tau, K., Peus, D., Pittelkow, M., Jalal, S., Riggs, B. L., Roche, P., and Spelsberg, T. C. (1998). Tissue, cell type, and breast cancer stage-specific expression of a TGF-beta inducible early transcription factor gene. J Cell Biochem 68, 226–236.PubMedCrossRefGoogle Scholar
  66. Suda, S., Rai, T., Sohara, E., Sasaki, S., and Uchida, S. (2006). Postnatal expression of KLF12 in the inner medullary collecting ducts of kidney and its trans-activation of UT-A1 urea transporter promoter. Biochem Biophys Res Commun 344, 246–252.PubMedCrossRefGoogle Scholar
  67. Sue, N., Jack, B. H., Eaton, S. A., Pearson, R. C., Funnell, A. P., Turner, J., Czolij, R., Denyer, G., Bao, S., Molero-Navajas, J. C., et al. (2008). Targeted disruption of the basic Kruppel-like factor gene (KLF3) reveals a role in adipogenesis. Mol Cell Biol 28, 3967–3978.PubMedCrossRefGoogle Scholar
  68. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.PubMedCrossRefGoogle Scholar
  69. Ton-That, H., Kaestner, K. H., Shields, J. M., Mahatanankoon, C. S., and Yang, V. W. (1997). Expression of the gut-enriched Kruppel-like factor gene during development and intestinal tumorigenesis. FEBS Lett 419, 239–243.PubMedCrossRefGoogle Scholar
  70. Tsubone, T., Moran, S. L., Subramaniam, M., Amadio, P. C., Spelsberg, T. C., and An, K. N. (2006). Effect of TGF-beta inducible early gene deficiency on flexor tendon healing. J Orthop Res 24, 569–575.PubMedCrossRefGoogle Scholar
  71. Turner, J., and Crossley, M. (1999). Basic Kruppel-like factor functions within a network of interacting haematopoietic transcription factors. Int J Biochem Cell Biol 31, 1169–1174.PubMedCrossRefGoogle Scholar
  72. Uchida, S., Tanaka, Y., Ito, H., Saitoh-Ohara, F., Inazawa, J., Yokoyama, K. K., Sasaki, S., and Marumo, F. (2000). Transcriptional regulation of the CLC-K1 promoter by myc-associated zinc finger protein and kidney-enriched Kruppel-like factor, a novel zinc finger repressor. Mol Cell Biol 20, 7319–7331.PubMedCrossRefGoogle Scholar
  73. van Vliet, J., Crofts, L. A., Quinlan, K. G., Czolij, R., Perkins, A. C., and Crossley, M. (2006). Human KLF17 is a new member of the Sp/KLF family of transcription factors. Genomics 87, 474–482.PubMedCrossRefGoogle Scholar
  74. van Vliet, J., Turner, J., and Crossley, M. (2000). Human Kruppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res 28, 1955–1962.PubMedCrossRefGoogle Scholar
  75. Wang, B., Haldar, S. M., Lu, Y., Ibrahim, O. A., Fisch, S., Gray, S., Leask, A., and Jain, M. K. (2008). The Kruppel-like factor KLF15 inhibits connective tissue growth factor (CTGF) expression in cardiac fibroblasts. J Mol Cell Cardiol.Google Scholar
  76. Wani, M. A., Means, R. T., Jr., and Lingrel, J. B. (1998). Loss of LKLF function results in embryonic lethality in mice. Transgenic Res 7, 229–238.PubMedCrossRefGoogle Scholar
  77. Wani, M. A., Wert, S. E., and Lingrel, J. B. (1999). Lung Kruppel-like factor, a zinc finger transcription factor, is essential for normal lung development. J Biol Chem 274, 21180–21185.PubMedCrossRefGoogle Scholar
  78. Wu, J., Srinivasan, S. V., Neumann, J. C., and Lingrel, J. B. (2005). The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes. Biochemistry 44, 11098–11105.PubMedCrossRefGoogle Scholar
  79. Yajima, S., Lammers, C. H., Lee, S. H., Hara, Y., Mizuno, K., and Mouradian, M. M. (1997). Cloning and characterization of murine glial cell-derived neurotrophic factor inducible transcription factor (MGIF). J Neurosci 17, 8657–8666.PubMedGoogle Scholar
  80. Yan, W., Burns, K. H., Ma, L., and Matzuk, M. M. (2002). Identification of Zfp393, a germ cell-specific gene encoding a novel zinc finger protein. Mech Dev 118, 233–239.PubMedCrossRefGoogle Scholar
  81. Zeng, Z., Velarde, M. C., Simmen, F. A., and Simmen, R. C. (2008). Delayed parturition and altered myometrial progesterone receptor isoform a expression in mice null for Kruppel-like factor 9. Biol Reprod 78, 1029–1037.PubMedCrossRefGoogle Scholar
  82. Zhou, M., McPherson, L., Feng, D., Song, A., Dong, C., Lyu, S. C., Zhou, L., Shi, X., Ahn, Y. T., Wang, D., et al. (2007). Kruppel-like transcription factor 13 regulates T lymphocyte survival in vivo. J Immunol 178, 5496–5504.PubMedGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Yizeng Yang
    • 1
  • Jonathan P. Katz
    • 1
  1. 1.Division of Gastroenterology, Department of MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations