Advertisement

Co-regulator Interactions in Krüppel-like Factor Transcriptional Programs

  • Richard C. M. Pearson
  • Briony H. A. Jack
  • Stella H. Y. Lee
  • Alister P. W. Funnell
  • Merlin Crossley

Abstract

Krüppel-like transcription factors (KLFs) comprise a family of gene regulatory proteins with diverse roles in cellular proliferation, survival, and differentiation. KLFs contain three characteristic, highly conserved C-terminal zinc fingers that coordinate sequence-specific DNA binding. Despite having highly homologous DNA binding domains, family members are able to regulate the expression of diverse target genes, resulting in both temporal and tissue-specific control of differentiation. To do this, KLFs have evolved distinct N-terminal regulatory domains that allow interaction with various co-regulators. This chapter describes the cofactors that interact with KLFs and outlines how these interactions potentiate or inhibit KLF transcriptional activity, how they help define target gene specificity, and how they dictate whether a gene is activated or repressed.

Keywords

Zinc Finger Domain Histone Deacetylase Activity Protein Kinase Casein Kinase Sin3 Protein Basic Transcription Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson KP, Kern CB, Crable SC et al (1995) Isolation of a gene encoding a functional zinc finger protein homologous to erythroid Kruppel-like factor: identification of a new multigene family. Mol Cell Biol 15:5957–5965PubMedGoogle Scholar
  2. Armstrong JA, Bieker JJ, Emerson BM (1998) A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 95:93–104PubMedCrossRefGoogle Scholar
  3. Ayer DE, Lawrence QA, Eisenman RN (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80:767–776PubMedCrossRefGoogle Scholar
  4. Bai A, Hu H, Yeung M et al (2007) Kruppel-like factor 2 controls T cell trafficking by activating L-selectin (CD62L) and sphingosine-1-phosphate receptor 1 transcription. J Immunol 178:7632–7639PubMedGoogle Scholar
  5. Banerjee SS, Feinberg MW, Watanabe M et al (2003) The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem 278:2581–2584PubMedCrossRefGoogle Scholar
  6. Brown RC, Pattison S, van Ree J et al (2002) Distinct domains of erythroid Kruppel-like factor modulate chromatin remodeling and transactivation at the endogenous beta-globin gene promoter. Mol Cell Biol 22:161–170PubMedCrossRefGoogle Scholar
  7. Brubaker K, Cowley SM, Huang K et al (2000) Solution structure of the interacting domains of the Mad-Sin3 complex: implications for recruitment of a chromatin-modifying complex. Cell 103:655–665PubMedCrossRefGoogle Scholar
  8. Chen C, Sun X, Ran Q et al (2005) Ubiquitin-proteasome degradation of KLF5 transcription factor in cancer and untransformed epithelial cells. Oncogene 24:3319–3327PubMedCrossRefGoogle Scholar
  9. Chen X, Bieker JJ (1996) Erythroid Kruppel-like factor (EKLF) contains a multifunctional tran-scriptional activation domain important for inter- and intramolecular interactions. The EMBO journal 15:5888–5896PubMedGoogle Scholar
  10. Chen X, Bieker JJ (2001) Unanticipated repression function linked to erythroid Kruppel-like factor. Mol Cell Biol 21:3118–3125PubMedCrossRefGoogle Scholar
  11. Chen X, Bieker JJ (2004) Stage-specific repression by the EKLF transcriptional activator. Mol Cell Biol 24:10416–10424PubMedCrossRefGoogle Scholar
  12. Chinnadurai G (2002) CtBP, an unconventional transcriptional co-repressor in development and oncogenesis. Mol Cell 9:213–224PubMedCrossRefGoogle Scholar
  13. Conkright MD, Wani MA, Anderson KP et al (1999) A gene encoding an intestinal-enriched member of the Kruppel-like factor family expressed in intestinal epithelial cells. Nucleic Acids Res 27:1263–1270PubMedCrossRefGoogle Scholar
  14. Conkright MD, Wani MA, Lingrel JB (2001) Lung Kruppel-like factor contains an autoinhibitory domain that regulates its transcriptional activation by binding WWP1, an E3 ubiquitin ligase. J Biol Chem 276:29299–29306PubMedCrossRefGoogle Scholar
  15. Drissen R, von Lindern M, Kolbus A et al (2005) The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol 25:5205–5214PubMedCrossRefGoogle Scholar
  16. Ellenrieder V, Zhang JS, Kaczynski J et al (2002) Signaling disrupts mSin3A binding to the Mad1-like Sin3-interacting domain of TIEG2, an Sp1-like repressor. Embo J 21:2451–2460PubMedCrossRefGoogle Scholar
  17. Evans PM, Zhang W, Chen X et al (2007) Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. J Biol Chem 282:33994–34002PubMedCrossRefGoogle Scholar
  18. Fernandez-Zapico ME, Mladek A, Ellenrieder V et al (2003) An mSin3A interaction domain links the transcriptional activity of KLF11 with its role in growth regulation. Embo J 22:4748–4758PubMedCrossRefGoogle Scholar
  19. Gaston K, Jayaraman PS (2003) Transcriptional repression in eukaryotes: repressors and repression mechanisms. Cell Mol Life Sci 60:721–741PubMedCrossRefGoogle Scholar
  20. Geiman DE, Ton-That H, Johnson JM et al (2000) Transactivation and growth suppression by the gut-enriched Kruppel-like factor (Kruppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction. Nucleic Acids Res 28:1106–1113PubMedCrossRefGoogle Scholar
  21. Ghaleb AM, Nandan MO, Chanchevalap S et al (2005) Kruppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res 15:92–96PubMedCrossRefGoogle Scholar
  22. Gohla G, Krieglstein K, Spittau B (2008) Tieg3/Klf11 induces apoptosis in OLI-neu cells and enhances the TGF-beta signaling pathway by transcriptional repression of Smad7. J Cell Biochem 104:850–861PubMedCrossRefGoogle Scholar
  23. Gowri PM, Yu JH, Shaufl A et al (2003) Recruitment of a repressosome complex at the growth hormone receptor promoter and its potential role in diabetic nephropathy. Mol Cell Biol 23:815–825PubMedCrossRefGoogle Scholar
  24. Halleck MS, Pownall S, Harder KW et al (1995) A widely distributed putative mammalian transcriptional regulator containing multiple paired amphipathic helices, with similarity to yeast SIN3. Genomics 26:403–406PubMedCrossRefGoogle Scholar
  25. Hassig CA, Fleischer TC, Billin AN et al (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89:341–347PubMedCrossRefGoogle Scholar
  26. Hildebrand JD, Soriano P (2002) Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 22:5296–5307PubMedCrossRefGoogle Scholar
  27. Hodge D, Coghill E, Keys J et al (2006) A global role for EKLF in definitive and primitive erythropoiesis. Blood 107:3359–3370PubMedCrossRefGoogle Scholar
  28. Johnsen SA, Subramaniam M, Monroe DG et al (2002) Modulation of transforming growth factor beta (TGFbeta)/Smad transcriptional responses through targeted degradation of TGFbeta-inducible early gene-1 by human seven in absentia homologue. J Biol Chem 277:30754–30759PubMedCrossRefGoogle Scholar
  29. Kaczynski J, Zhang JS, Ellenrieder V et al (2001) The Sp1-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Sp1. J Biol Chem 276:36749–36756PubMedCrossRefGoogle Scholar
  30. Kaczynski JA, Conley AA, Fernandez Zapico M et al (2002) Functional analysis of basic transcription element (BTE)-binding protein (BTEB) 3 and BTEB4, a novel Sp1-like protein, reveals a subfamily of transcriptional repressors for the BTE site of the cytochrome P4501A1 gene promoter. Biochem J 366:873–882PubMedGoogle Scholar
  31. Kadam S, McAlpine GS, Phelan ML et al (2000) Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes & development 14:2441–2451CrossRefGoogle Scholar
  32. Keys JR, Tallack MR, Hodge DJ et al (2007) Genomic organisation and regulation of murine alpha haemoglobin stabilising protein by erythroid Kruppel-like factor. British journal of haematology 136:150–157PubMedCrossRefGoogle Scholar
  33. Koipally J, Georgopoulos K (2000) Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity. J Biol Chem 275:19594–19602PubMedCrossRefGoogle Scholar
  34. Koritschoner NP, Bocco JL, Panzetta-Dutari GM et al (1997) A novel human zinc finger protein that interacts with the core promoter element of a TATA box-less gene. J Biol Chem 272:9573–9580PubMedCrossRefGoogle Scholar
  35. Laherty CD, Yang WM, Sun JM et al (1997) Histone deacetylases associated with the mSin3 co-repressor mediate mad transcriptional repression. Cell 89:349–356PubMedCrossRefGoogle Scholar
  36. Li D, Yea S, Dolios G et al (2005) Regulation of Kruppel-like factor 6 tumor suppressor activity by acetylation. Cancer Res 65:9216–9225PubMedCrossRefGoogle Scholar
  37. Matsumoto N, Laub F, Aldabe R et al (1998) Cloning the cDNA for a new human zinc finger protein defines a group of closely related Kruppel-like transcription factors. J Biol Chem 273:28229–28237PubMedCrossRefGoogle Scholar
  38. Miyamoto S, Suzuki T, Muto S et al (2003) Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain. Mol Cell Biol 23:8528–8541PubMedCrossRefGoogle Scholar
  39. Mori T, Sakaue H, Iguchi H et al (2005) Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 280:12867–12875PubMedCrossRefGoogle Scholar
  40. Oishi Y, Manabe I, Tobe K et al (2005) Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 1:27–39PubMedCrossRefGoogle Scholar
  41. Ouyang L, Chen X, Bieker JJ (1998) Regulation of erythroid Kruppel-like factor (EKLF) transcriptional activity by phosphorylation of a protein kinase casein kinase II site within its interaction domain. J Biol Chem 273:23019–23025PubMedCrossRefGoogle Scholar
  42. Pandya K, Donze D, Townes TM (2001) Novel transactivation domain in erythroid Kruppel-like factor (EKLF). J Biol Chem 276:8239–8243PubMedCrossRefGoogle Scholar
  43. Perdomo J, Verger A, Turner J et al (2005) Role for SUMO modification in facilitating transcrip-tional repression by BKLF. Mol Cell Biol 25:1549–1559PubMedCrossRefGoogle Scholar
  44. Pilon AM, Nilson DG, Zhou D et al (2006) Alterations in expression and chromatin configuration of the alpha hemoglobin-stabilizing protein gene in erythroid Kruppel-like factor-deficient mice. Mol Cell Biol 26:4368–4377PubMedCrossRefGoogle Scholar
  45. Quadrini KJ, Bieker JJ (2006) EKLF/KLF1 is ubiquitinated in vivo and its stability is regulated by activation domain sequences through the 26S proteasome. FEBS Lett 580:2285–2293PubMedCrossRefGoogle Scholar
  46. Rowland BD, Bernards R, Peeper DS (2005) The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 7:1074–1082PubMedCrossRefGoogle Scholar
  47. Ryu JR, Arnosti DN (2003) Functional similarity of Knirps CtBP-dependent and CtBP-independent transcriptional repressor activities. Nucleic Acids Res 31:4654–4662PubMedCrossRefGoogle Scholar
  48. Schaeper U, Boyd JM, Verma S et al (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci U S A 92:10467–10471PubMedCrossRefGoogle Scholar
  49. Schaeper U, Subramanian T, Lim L et al (1998) Interaction between a cellular protein that binds to the C-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLS motif. J Biol Chem 273:8549–8552PubMedCrossRefGoogle Scholar
  50. Schotta G, Ebert A, Krauss V et al (2002) Central role of Drosophila SU(VAR)3–9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21:1121–1131PubMedCrossRefGoogle Scholar
  51. Schuierer M, Hilger-Eversheim K, Dobner T et al (2001) Induction of AP-2alpha expression by adenoviral infection involves inactivation of the AP-2rep transcriptional co-repressor CtBP1. J Biol Chem 276:27944–27949PubMedCrossRefGoogle Scholar
  52. SenBanerjee S, Lin Z, Atkins GB et al (2004) KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199:1305–1315PubMedCrossRefGoogle Scholar
  53. Sengupta N, Seto E (2004) Regulation of histone deacetylase activities. J Cell Biochem 93:57–67PubMedCrossRefGoogle Scholar
  54. Shi Y, Lan F, Matson C et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953PubMedCrossRefGoogle Scholar
  55. Shi Y, Sawada J, Sui G et al (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422:735–738PubMedCrossRefGoogle Scholar
  56. Siatecka M, Xue L, Bieker JJ (2007) Sumoylation of EKLF promotes transcriptional repression and is involved in inhibition of megakaryopoiesis. Mol Cell Biol 27:8547–8560PubMedCrossRefGoogle Scholar
  57. Sif S, Saurin AJ, Imbalzano AN et al (2001) Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev 15:603–618PubMedCrossRefGoogle Scholar
  58. Silverstein RA, Ekwall K (2005) Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet 47:1–17PubMedCrossRefGoogle Scholar
  59. Song CZ, Keller K, Murata K et al (2002) Functional interaction between co-activators CBP/p300, PCAF, and transcription factor FKLF2. J Biol Chem 277:7029–7036PubMedCrossRefGoogle Scholar
  60. Stewart MD, Li J, Wong J (2005) Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 25:2525–2538PubMedCrossRefGoogle Scholar
  61. Sue N, Jack BH, Eaton SA et al (2008) Targeted disruption of the Basic Kruppel-like Factor (Klf3) gene reveals a role in adipogenesis. Mol Cell BiolGoogle Scholar
  62. Turner J, Crossley M (1998) Cloning and characterization of mCtBP2, a co-repressor that associates with basic Krüppel-like factor and other mammalian transcriptional regulators. EMBO J 17:5129–5140PubMedCrossRefGoogle Scholar
  63. van Vliet J, Crofts LA, Quinlan KG et al (2006) Human KLF17 is a new member of the Sp/KLF family of transcription factors. Genomics 87:474–482PubMedCrossRefGoogle Scholar
  64. van Vliet J, Turner J, Crossley M (2000) Human Krüppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res 28:1955–1962PubMedCrossRefGoogle Scholar
  65. Verger A, Perdomo J, Crossley M (2003) Modification with SUMO. A role in transcriptional regulation. EMBO Rep 4:137–142Google Scholar
  66. Wang F, Zhu Y, Huang Y et al (2005) Transcriptional repression of WEE1 by Kruppel-like factor 2 is involved in DNA damage-induced apoptosis. Oncogene 24:3875–3885PubMedCrossRefGoogle Scholar
  67. Wang H, Stillman DJ (1993) Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol Cell Biol 13:1805–1814PubMedGoogle Scholar
  68. Wei H, Wang X, Gan B et al (2006) Sumoylation delimits KLF8 transcriptional activity associated with the cell cycle regulation. J Biol Chem 281:16664–16671PubMedCrossRefGoogle Scholar
  69. Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11:141–148PubMedCrossRefGoogle Scholar
  70. Wu J, Lingrel JB (2004) KLF2 inhibits Jurkat T leukemia cell growth via upregulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1. Oncogene 23:8088–8096PubMedCrossRefGoogle Scholar
  71. Yang L, Mei Q, Zielinska-Kwiatkowska A et al (2003) An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1/2 and transcription co-repressors mSin3A/B. Biochem J 369:651–657PubMedCrossRefGoogle Scholar
  72. Yang X, Zhang F, Kudlow JE (2002) Recruitment of O-GlcNAc transferase to promoters by co-repressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110:69–80PubMedCrossRefGoogle Scholar
  73. Yet SF, McA'Nulty MM, Folta SC et al (1998) Human EZF, a Kruppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains. J Biol Chem 273:1026–1031PubMedCrossRefGoogle Scholar
  74. Zhang JS, Moncrieffe MC, Kaczynski J et al (2001a) A conserved alpha-helical motif mediates the interaction of Sp1-like transcriptional repressors with the co-repressor mSin3A. Mol Cell Biol 21:5041–5049CrossRefGoogle Scholar
  75. Zhang W, Bieker JJ (1998) Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci U S A 95:9855–9860PubMedCrossRefGoogle Scholar
  76. Zhang W, Kadam S, Emerson BM et al (2001b) Site-specific acetylation by p300 or CREB binding protein regulates erythroid Kruppel-like factor transcriptional activity via its interaction with the SWI-SNF complex. Mol Cell Biol 21:2413–2422CrossRefGoogle Scholar
  77. Zhang X, Srinivasan SV, Lingrel JB (2004) WWP1-dependent ubiquitination and degradation of the lung Kruppel-like factor, KLF2. Biochem Biophys Res Commun 316:139–148PubMedCrossRefGoogle Scholar
  78. Zhang Y, Iratni R, Erdjument-Bromage H et al (1997) Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89:357–364PubMedCrossRefGoogle Scholar
  79. Zhang Z, Teng CT (2003) Phosphorylation of Kruppel-like factor 5 (KLF5/IKLF) at the CBP interaction region enhances its transactivation function. Nucleic Acids Res 31:2196–2208PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Richard C. M. Pearson
    • 1
  • Briony H. A. Jack
    • 1
  • Stella H. Y. Lee
    • 2
  • Alister P. W. Funnell
    • 1
  • Merlin Crossley
    • 1
  1. 1.School of Molecular and Microbial BiosciencesUniversity of SydneySydneyAustralia
  2. 2.Victor Chang Cardiac Research InstituteDarlinghurstAustralia

Personalised recommendations