Krüppel-like Factor Proteins and Chromatin Dynamics

  • Navtej S. Buttar
  • Gwen A. Lomberk
  • Gaurang S. Daftary
  • Raul A. Urrutia


Krüppel-like factors (KLFs) are transcription regulatory proteins. Members of this protein family are characterized by a highly conserved C-terminus that has three zinc finger domains that bind to GC-rich sequences in DNA. The N-terminal domains of these proteins contain regulatory regions that can activate or repress transcription in a context-specific manner. KLFs interact with a wide range of co-activators or co-repressors to accomplish their transcription regulatory function. These interactions provide a complex stage for the chromatin dynamics to unfold and regulate diverse biological functions. This chapter focuses on expanding our understanding of molecular mechanisms of transcription regulation by KLFs and their impact on chromatin dynamics.


Zinc Finger Zinc Finger Domain Chromatin Dynamic Promyelocytic Leukemia Zinc Finger Transcription Regulatory Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdelrahim, M., R. Smith, 3rd, et al. (2004). “Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells.” Cancer Research 64(18):6740–9.PubMedCrossRefGoogle Scholar
  2. Ayer, D. E., Q. A. Lawrence, et al. (1995). “Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3.” Cell 80(5):767–76.PubMedCrossRefGoogle Scholar
  3. Bieker, J. J. (2001). “Kruppel-like factors: three fingers in many pies.” J Biol Chem 276(37):34355–8.PubMedCrossRefGoogle Scholar
  4. Black, A. R., J. D. Black, et al. (2001). “Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer.” Journal of Cellular Physiology 188(2):143–60.PubMedCrossRefGoogle Scholar
  5. Boyd, J. M., T. Subramanian, et al. (1993). “A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis.” Embo J 12(2):469–78.PubMedGoogle Scholar
  6. Brown, J. L., D. J. Grau, et al. (2005). “An Sp1/KLF binding site is important for the activity of a Polycomb group response element from the Drosophila engrailed gene.” Nucleic Acids Res 33(16):5181–9.PubMedCrossRefGoogle Scholar
  7. Brubaker, K., S. M. Cowley, et al. (2000). “Solution structure of the interacting domains of the Mad-Sin3 complex: implications for recruitment of a chromatin-modifying complex.” Cell 103(4):655–65.PubMedCrossRefGoogle Scholar
  8. Buttar, N. S., M. E. Fernandez-Zapico, et al. (2006). “Key role of Kruppel-like factor proteins in pancreatic cancer and other gastrointestinal neoplasias.” Current Opinion in Gastroenterology 22(5):505–11.PubMedCrossRefGoogle Scholar
  9. Cao, S., M. E. Fernandez-Zapico, et al. (2005). “KLF11-mediated repression antagonizes Sp1/ sterol-responsive element-binding protein-induced transcriptional activation of caveolin-1 in response to cholesterol signaling.” J Biol Chem 280(3):1901–10.PubMedCrossRefGoogle Scholar
  10. Carlson, C. M., B. T. Endrizzi, et al. (2006). “Kruppel-like factor 2 regulates thymocyte and T-cell migration.” Nature 442(7100):299–302.PubMedCrossRefGoogle Scholar
  11. Chen, H., R. J. Lin, et al. (1999). “Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase.” Cell 98(5):675–86.PubMedCrossRefGoogle Scholar
  12. Cook, T., B. Gebelein, et al. (1999). “Three conserved transcriptional repressor domains are a defining feature of the TIEG subfamily of Sp1-like zinc finger proteins.” J Biol Chem 274(41):29500–4.PubMedCrossRefGoogle Scholar
  13. Cook, T., B. Gebelein, et al. (1998). “Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta-inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth.” J Biol Chem 273(40):25929–36.PubMedCrossRefGoogle Scholar
  14. Cook, T. and R. Urrutia (2000). “TIEG proteins join the Smads as TGF-beta-regulated transcription factors that control pancreatic cell growth.” Am J Physiol Gastrointest Liver Physiol 278(4):G513–21.PubMedGoogle Scholar
  15. Crossley, M., E. Whitelaw, et al. (1996). “Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells.” Mol Cell Biol 16(4):1695–705.PubMedGoogle Scholar
  16. Drissen, R., M. von Lindern, et al. (2005). “The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability.” Mol Cell Biol 25(12):5205–14.PubMedCrossRefGoogle Scholar
  17. Du, X., P. Hublitz, et al. (2002). “The LIM-only coactivator FHL2 modulates WT1 transcriptional activity during gonadal differentiation.” Biochim Biophys Acta 1577(1):93–101.PubMedGoogle Scholar
  18. Eaton, S. A., A. P. Funnell, et al. (2008). “A network of Kruppel-like Factors (Klfs). Klf8 is repressed by Klf3 and activated by Klf1 in vivo.” J Biol Chem 283(40):26937–47.PubMedCrossRefGoogle Scholar
  19. Eilers, A. L., A. N. Billin, et al. (1999). “A 13-amino acid amphipathic alpha-helix is required for the functional interaction between the transcriptional repressor Mad1 and mSin3A.” J Biol Chem 274(46):32750–6.PubMedCrossRefGoogle Scholar
  20. Ellenrieder, V., J. S. Zhang, et al. (2002). “Signaling disrupts mSin3A binding to the Mad1-like Sin3-interacting domain of TIEG2, an Sp1-like repressor.” Embo J 21(10):2451–60.PubMedCrossRefGoogle Scholar
  21. Feinberg, M. W., Z. Cao, et al. (2005). “Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages.” Journal of Biological Chemistry 280(46):38247–58.PubMedCrossRefGoogle Scholar
  22. Fernandez-Zapico, M. E., A. Mladek, et al. (2003). “An mSin3A interaction domain links the transcriptional activity of KLF11 with its role in growth regulation.” Embo J 22(18):4748–58.PubMedCrossRefGoogle Scholar
  23. Funnell, A. P., C. A. Maloney, et al. (2007). “Erythroid Kruppel-like factor directly activates the basic Kruppel-like factor gene in erythroid cells.” Mol Cell Biol 27(7):2777–90.PubMedCrossRefGoogle Scholar
  24. Geiman, D. E., H. Ton-That, et al. (2000). “Transactivation and growth suppression by the gut-enriched Kruppel-like factor (Kruppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction.” Nucleic Acids Res 28(5):1106–13.PubMedCrossRefGoogle Scholar
  25. Gill, G., E. Pascal, et al. (1994). “A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation.” Proc Natl Acad Sci U S A 91(1):192–6.PubMedCrossRefGoogle Scholar
  26. Gu, J., R. M. Rubin, et al. (2001). “A sequence element of p53 that determines its susceptibility to viral oncoprotein-targeted degradation.” Oncogene 20(27):3519–27.PubMedCrossRefGoogle Scholar
  27. Hagen, G., J. Dennig, et al. (1995). “Functional analyses of the transcription factor Sp4 reveal properties distinct from Sp1 and Sp3.” J Biol Chem 270(42):24989–94.PubMedCrossRefGoogle Scholar
  28. Halleck, M. S., S. Pownall, et al. (1995). “A widely distributed putative mammalian transcrip-tional regulator containing multiple paired amphipathic helices, with similarity to yeast SIN3.” Genomics 26(2):403–6.PubMedCrossRefGoogle Scholar
  29. Hassig, C. A., T. C. Fleischer, et al. (1997). “Histone deacetylase activity is required for full transcriptional repression by mSin3A.” Cell 89(3):341–7.PubMedCrossRefGoogle Scholar
  30. Imataka, H., K. Sogawa, et al. (1992). “Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene.” Embo J 11(10):3663–71.PubMedGoogle Scholar
  31. Imhof, A., M. Schuierer, et al. (1999). “Transcriptional regulation of the AP-2alpha promoter by BTEB-1 and AP-2rep, a novel wt-1/egr-related zinc finger repressor.” Mol Cell Biol 19(1):194–204.PubMedGoogle Scholar
  32. Kaczynski, J., T. Cook, et al. (2003). “Sp1- and Kruppel-like transcription factors.” Genome Biol 4(2):206.PubMedCrossRefGoogle Scholar
  33. Kaczynski, J., J. S. Zhang, et al. (2001). “The Sp1-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Sp1.” J Biol Chem 276(39):36749–56.PubMedCrossRefGoogle Scholar
  34. Kaczynski, J. A., A. A. Conley, et al. (2002). “Functional analysis of basic transcription element (BTE)-binding protein (BTEB) 3 and BTEB4, a novel Sp1-like protein, reveals a subfamily of transcriptional repressors for the BTE site of the cytochrome P4501A1 gene promoter.” Biochem J 366(Pt 3):873–82.PubMedGoogle Scholar
  35. Kadosh, D. and K. Struhl (1998). “Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo.” Genes Dev 12(6):797–805.PubMedCrossRefGoogle Scholar
  36. Kasten, M. M., S. Dorland, et al. (1997). “A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators.” Mol Cell Biol 17(8):4852–8.PubMedGoogle Scholar
  37. Kingsley, C. and A. Winoto (1992). “Cloning of GT box-binding proteins: a novel Sp1 multigene family regulating T-cell receptor gene expression.” Mol Cell Biol 12(10):4251–61.PubMedGoogle Scholar
  38. Koipally, J. and K. Georgopoulos (2000). “Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity.” J Biol Chem 275(26):19594–602.PubMedCrossRefGoogle Scholar
  39. Laherty, C. D., H. M. Hu, et al. (1992). “The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B.” Journal of Biological Chemistry 267(34):24157–60.PubMedGoogle Scholar
  40. Lin, Z., A. Kumar, et al. (2005). “Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function.” Circulation Research 96(5):e48–57.PubMedCrossRefGoogle Scholar
  41. Liu, C., A. Calogero, et al. (1996). “EGR-1, the reluctant suppression factor: EGR-1 is known to function in the regulation of growth, differentiation, and also has significant tumor suppressor activity and a mechanism involving the induction of TGF-beta1 is postulated to account for this suppressor activity.” Crit Rev Oncog 7(1–2):101–25.PubMedGoogle Scholar
  42. Lomberk, G., S. Ilyas, et al. (2008a). “KLF11 Complexes With the Epigenetic Gene Silencer Protein, HP1 to Mediate Tumor Suppressor Activities..” Pancreas 37(4):481.Google Scholar
  43. Lomberk, G. and R. Urrutia (2005). “The family feud: turning off Sp1 by Sp1-like KLF proteins.” Biochem J 392(Pt 1):1–11.PubMedCrossRefGoogle Scholar
  44. Lomberk, G., L. Wallrath, et al. (2006). “The Heterochromatin Protein 1 family.” Genome Biol 7(7):228.PubMedCrossRefGoogle Scholar
  45. Lomberk, G., J. Zhang, et al. (2008b). “ A New Molecular Model for Regulating the TGFβ Receptor II Promoter in Pancreatic Cells..” Pancreas 36(2):223.CrossRefGoogle Scholar
  46. Marin, M., A. Karis, et al. (1997). “Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation.” Cell 89(4):619–28.PubMedCrossRefGoogle Scholar
  47. Mathison, A., G. Lomberk, et al. (2008). “ The Gβ Subunit of Heterotrimeric G Proteins Links Pancreatic PCR Activation To Long Term Responses..” Pancreas. 37:484.Google Scholar
  48. Matsumoto, N., F. Laub, et al. (1998). “Cloning the cDNA for a new human zinc finger protein defines a group of closely related Kruppel-like transcription factors.” J Biol Chem 273(43):28229–37.PubMedCrossRefGoogle Scholar
  49. Matsumura, T., T. Suzuki, et al. (2005). “The deacetylase HDAC1 negatively regulates the cardiovascular transcription factor Kruppel-like factor 5 through direct interaction.” J Biol Chem 280(13):12123–9.PubMedCrossRefGoogle Scholar
  50. McLoughlin, P., E. Ehler, et al. (2002). “The LIM-only protein DRAL/FHL2 interacts with and is a corepressor for the promyelocytic leukemia zinc finger protein.” J Biol Chem 277(40):37045–53.PubMedCrossRefGoogle Scholar
  51. Meloni, A. R., E. J. Smith, et al. (1999). “A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor.” Proc Natl Acad Sci U S A 96(17):9574–9.PubMedCrossRefGoogle Scholar
  52. Muller, H. J., C. Skerka, et al. (1991). “Clone pAT 133 identifies a gene that encodes another human member of a class of growth factor-induced genes with almost identical zinc-finger domains.” Proceedings of the National Academy of Sciences of the United States of America 88(22):10079–83.PubMedCrossRefGoogle Scholar
  53. Neve, B., M. E. Fernandez-Zapico, et al. (2005). “Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function.” Proc Natl Acad Sci U S A 102(13):4807–12.PubMedCrossRefGoogle Scholar
  54. Nibu, Y., H. Zhang, et al. (1998a). “dCtBP mediates transcriptional repression by Knirps, Kruppel and Snail in the Drosophila embryo.” Embo J 17(23):7009–20.CrossRefGoogle Scholar
  55. Nibu, Y., H. Zhang, et al. (1998b). “Interaction of short-range repressors with Drosophila CtBP in the embryo.” Science 280(5360):101–4.CrossRefGoogle Scholar
  56. Nielsen, S. J., M. Praestegaard, et al. (1998). “Different Sp1 family members differentially affect transcription from the human elongation factor 1 A-1 gene promoter.” Biochem J 333 (Pt 3):511–7.PubMedGoogle Scholar
  57. Pandya, K. and T. M. Townes (2002). “Basic residues within the Kruppel zinc finger DNA binding domains are the critical nuclear localization determinants of EKLF/KLF-1.” J Biol Chem 277(18):16304–12.PubMedCrossRefGoogle Scholar
  58. Pang, Y. P., G. A. Kumar, et al. (2003). “Differential binding of Sin3 interacting repressor domains to the PAH2 domain of Sin3A.” FEBS Lett 548(1–3):108–12.PubMedCrossRefGoogle Scholar
  59. Phippen, T. M., A. L. Sweigart, et al. (2000). “Drosophila C-terminal binding protein functions as a context-dependent transcriptional co-factor and interferes with both mad and groucho transcriptional repression.” J Biol Chem 275(48):37628–37.PubMedCrossRefGoogle Scholar
  60. Poortinga, G., M. Watanabe, et al. (1998). “Drosophila CtBP: a Hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression.” Embo J 17(7):2067–78.PubMedCrossRefGoogle Scholar
  61. Postigo, A. A. and D. C. Dean (1999). “ZEB represses transcription through interaction with the corepressor CtBP.” Proceedings of the National Academy of Sciences of the United States of America 96(12):6683–8.PubMedCrossRefGoogle Scholar
  62. Ratziu, V., A. Lalazar, et al. (1998). “Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis.” Proc Natl Acad Sci U S A 95(16):9500–5.PubMedCrossRefGoogle Scholar
  63. Roth, C., M. Schuierer, et al. (2000). “Genomic structure and DNA binding properties of the human zinc finger transcriptional repressor AP-2rep (KLF12).” Genomics 63(3):384–90.PubMedCrossRefGoogle Scholar
  64. Safe, S. and M. Abdelrahim (2005). “Sp transcription factor family and its role in cancer.” European Journal of Cancer 41(16):2438–48.PubMedCrossRefGoogle Scholar
  65. Schaeper, U., J. M. Boyd, et al. (1995). “Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation.” Proc Natl Acad Sci U S A 92(23):10467–71.PubMedCrossRefGoogle Scholar
  66. Schuierer, M., K. Hilger-Eversheim, et al. (2001). “Induction of AP-2alpha expression by adenoviral infection involves inactivation of the AP-2rep transcriptional corepressor CtBP1.” J Biol Chem 276(30):27944–9.PubMedCrossRefGoogle Scholar
  67. SenBanerjee, S., Z. Lin, et al. (2004). “KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation.” J Exp Med 199(10):1305–15.PubMedCrossRefGoogle Scholar
  68. Sewalt, R. G., M. J. Gunster, et al. (1999). “C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins.” Mol Cell Biol 19(1):777–87.PubMedGoogle Scholar
  69. Shields, J. M. and V. W. Yang (1997). “Two potent nuclear localization signals in the gut-enriched Kruppel-like factor define a subfamily of closely related Kruppel proteins.” J Biol Chem 272(29):18504–7.PubMedCrossRefGoogle Scholar
  70. Shields, J. M. and V. W. Yang (1998). “Identification of the DNA sequence that interacts with the gut-enriched Kruppel-like factor.” Nucleic Acids Res 26(3):796–802.PubMedCrossRefGoogle Scholar
  71. Sogawa, K., Y. Kikuchi, et al. (1993). “Comparison of DNA-binding properties between BTEB and Sp1.” J Biochem (Tokyo) 114(4):605–9.Google Scholar
  72. Sommer, A., S. Hilfenhaus, et al. (1997). “Cell growth inhibition by the Mad/Max complex through recruitment of histone deacetylase activity.” Curr Biol 7(6):357–65.PubMedCrossRefGoogle Scholar
  73. Song, C. Z., K. Keller, et al. (2003). “Functional interplay between CBP and PCAF in acetylation and regulation of transcription factor KLF13 activity.” J Mol Biol 329(2):207–15.PubMedCrossRefGoogle Scholar
  74. Song, C. Z., K. Keller, et al. (2002). “Functional interaction between coactivators CBP/p300, PCAF, and transcription factor FKLF2.” J Biol Chem 277(9):7029–36.PubMedCrossRefGoogle Scholar
  75. Subramaniam, M., J. R. Hawse, et al. (2007). “Role of TIEG1 in biological processes and disease states.” J Cell Biochem.Google Scholar
  76. Sundqvist, A., K. Sollerbrant, et al. (1998). “The carboxy-terminal region of adenovirus E1A activates transcription through targeting of a C-terminal binding protein-histone deacetylase complex.” FEBS Lett 429(2):183–8.PubMedCrossRefGoogle Scholar
  77. Tachibana, I., M. Imoto, et al. (1997). “Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells.” Journal of Clinical Investigation 99(10):2365–74.PubMedCrossRefGoogle Scholar
  78. Thiesen, H. J. (1990). “Multiple genes encoding zinc finger domains are expressed in human T cells.” New Biologist 2(4):363–74.PubMedGoogle Scholar
  79. Truty, M., G. Lomberk, et al. (2008). “Silencing of the TGFbeta receptor II by kruppel-like factor 14 underscores the importance of a negative feedback mechanism in TGFbeta signaling..” J Biol Chem Dec 15. [Epub ahead of print].Google Scholar
  80. Turner, J. and M. Crossley (1998). “Cloning and characterization of mCtBP2, a co-repressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators.” Embo J 17(17):5129–40.PubMedCrossRefGoogle Scholar
  81. Turner, J. and M. Crossley (1999). “Mammalian Kruppel-like transcription factors: more than just a pretty finger.” Trends Biochem Sci 24(6):236–40.PubMedCrossRefGoogle Scholar
  82. Turner, J., H. Nicholas, et al. (2003). “The LIM protein FHL3 binds basic Kruppel-like factor/ Kruppel-like factor 3 and its co-repressor C-terminal-binding protein 2.” J Biol Chem 278(15):12786–95.PubMedCrossRefGoogle Scholar
  83. van den Ent, F. M., A. J. van Wijnen, et al. (1993). “Concerted control of multiple histone promoter factors during cell density inhibition of proliferation in osteosarcoma cells: reciprocal regulation of cell cycle-controlled and bone-related genes.” Cancer Research 53(10 Suppl):2399–409.PubMedGoogle Scholar
  84. van Vliet, J., J. Turner, et al. (2000). “Human Krüppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription.” Nucleic Acids Res 1;28(9):1955–62.CrossRefGoogle Scholar
  85. Vidal, M., R. Strich, et al. (1991). “RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes.” Mol Cell Biol 11(12):6306–16.PubMedGoogle Scholar
  86. Vo, N. and R. H. Goodman (2001). “CREB-binding protein and p300 in transcriptional regulation.” J Biol Chem 276(17):13505–8.PubMedGoogle Scholar
  87. Wang, H., I. Clark, et al. (1990). “The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs.” Mol Cell Biol 10(11):5927–36.PubMedGoogle Scholar
  88. Wang, Z., B. Spittau, et al. (2007). “Human TIEG2/KLF11 induces oligodendroglial cell death by downregulation of Bcl-X(L) expression.” J Neural Transm 114(7):867–75.PubMedCrossRefGoogle Scholar
  89. Washburn, B. K. and R. E. Esposito (2001). “Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast.” Mol Cell Biol 21(6):2057–69.PubMedCrossRefGoogle Scholar
  90. Watanabe, G., C. Albanese, et al. (1998). “Inhibition of cyclin D1 kinase activity is associated with E2F-mediated inhibition of cyclin D1 promoter activity through E2F and Sp1.” Molecular & Cellular Biology 18(6):3212–22.Google Scholar
  91. Yang, X. J. (2004). “Lysine acetylation and the bromodomain: a new partnership for signaling.” Bioessays 26(10):1076–87.PubMedCrossRefGoogle Scholar
  92. Yochum, G. S. and D. E. Ayer (2001). “Pf1, a novel PHD zinc finger protein that links the TLE corepressor to the mSin3A-histone deacetylase complex.” Mol Cell Biol 21(13):4110–8.PubMedCrossRefGoogle Scholar
  93. Zhang, J., G. Lomberk, et al. (2007). “The Gb Subunit of Heterotrimeric G Proteins Links GPCR Activation With Transcriptional Regulation by KLF11, a Pancreatic Tumor Suppressor and a Diabetes Gene.” Gastroenterology 132(4 Suppl 2).Google Scholar
  94. Zhang, J. S., M. C. Moncrieffe, et al. (2001a). “A conserved alpha-helical motif mediates the interaction of Sp1-like transcriptional repressors with the corepressor mSin3A.” Mol Cell Biol 21(15):5041–9.CrossRefGoogle Scholar
  95. Zhang, W., S. Kadam, et al. (2001b). “Site-specific acetylation by p300 or CREB binding protein regulates erythroid Kruppel-like factor transcriptional activity via its interaction with the SWI-SNF complex.” Mol Cell Biol 21(7):2413–22.CrossRefGoogle Scholar
  96. Zhang, Y., R. Iratni, et al. (1997). “Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex.” Cell 89(3):357–64.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Navtej S. Buttar
    • 1
  • Gwen A. Lomberk
    • 1
  • Gaurang S. Daftary
    • 1
  • Raul A. Urrutia
    • 1
  1. 1.Chromatin Dynamics and Epigenetics Laboratory, Gastrointestinal Research UnitDivision of Gastroenterology and HepatologyRochesterUSA

Personalised recommendations