Molecular Structures of Krüppel-like Factors

  • Toshio Nagashima
  • Fumiaki Hayashi
  • Takashi Umehara
  • Shigeyuki Yokoyama


The Krüppel-like factor (KLF) family regulates several biological processes, such as self-renewal, proliferation, differentiation, development, and tissue-selectively restricted events of a cell at the transcriptional level. The KLF family has a highly conserved array of three C2H2-type zinc fingers with similarity to Drosophila Krüppel at the C-terminus, comprising a GC-rich DNA-binding domain, to mediate activation and/or repression of transcription. In contrast, the N-terminal regions of KLFs contain several distinct domains that are required for binding to chromatin-associated proteins, such as CtBP or Sin3A. We describe the structure—function aspects of KLFs, with a primary focus on the DNA-binding domains and the protein-binding domains.


Zinc Finger C2H2 Zinc Finger Histone Deacetylase HDAC1 Cys2His2 Zinc Finger Protein Ellenrieder Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chen C, Sun X, Guo P, Dong XY, Sethi P, Cheng X, Zhou J, Ling J, Simons JW, Lingrel JB, Dong JT (2005) Human Krüppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells. J Biol Chem 280:41553–41561PubMedCrossRefGoogle Scholar
  2. Chinnadurai G (2002) CtBP, an unconventional transcriptional co-repressor in development and oncogenesis. Mol Cell 9:213–224PubMedCrossRefGoogle Scholar
  3. Criqui-Filipe P, Ducret C, Maira S-M, Wasylyk B (1999) Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation. EMBO J 18:3392–3403PubMedCrossRefGoogle Scholar
  4. Du JX, Yun CC, Bialkowska A, Yang VW (2007) Protein inhibitor of activated STAT1 interacts with and up-regulates activities of the pro-proliferative transcription factor Krüppel-like factor 5. J Biol Chem 282:4782–4793PubMedCrossRefGoogle Scholar
  5. Elrod-Erickson M, Rould MA, Nekludova L, Pabo CO (1996) Zif268 protein-DNA complex refined at 1.6Å: a model system for understanding zinc finger-DNA interactions. Structure 4:1171–1180PubMedCrossRefGoogle Scholar
  6. Elrod-Erickson M, Benson TE, Pabo CO (1998) High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger-DNA recognition. Structure 6:451–464PubMedCrossRefGoogle Scholar
  7. Iuchi S (2001) Three Classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58:625–635PubMedCrossRefGoogle Scholar
  8. Izmailova ES, Wieczorek E, Perkins EB, Zehner ZE (1999) A GC-box is required for expression of the human vimentin gene. Gene 235:69–75PubMedCrossRefGoogle Scholar
  9. Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, Ng HH. (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10:353–360PubMedCrossRefGoogle Scholar
  10. Kaczynski J, Zhang J-S, Ellenrieder V, Conley A, Duenes T, Kester H, van der Burg B, Urrutia R (2001) The Sp1-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Sp1. J Biol Chem 276:36749–36756PubMedCrossRefGoogle Scholar
  11. Kaczynski J, Cook T, Urrutia R (2003) Sp1- and Krüppel-like transcription factors. Genome Biol 4:206PubMedCrossRefGoogle Scholar
  12. Lomberk G, Urrutia R (2005) The family feud: turning off SP1 by Sp1-like KLF proteins. Biochem J 392:1–11PubMedCrossRefGoogle Scholar
  13. Macias MJ, Wiesner S, Sudol M (2002) WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett 513:30–37PubMedCrossRefGoogle Scholar
  14. Matsumura T, Suzuki T, Aizawa K, Munemasa Y, Muto S, Horikoshi M, Nagai R (2005) The deacetylase HDAC1 negatively regulates the cardiovascular transcription factor Krüppel-like factor 5 through direct interaction. J Biol Chem 230:12123–12129Google Scholar
  15. Mayer BJ (2001) SH3 domains: complexity in moderation. J Cell Sci 114:1253–1263PubMedGoogle Scholar
  16. Miyamoto S, Suzuki T, Muto S, Aizawa K, Kimura A, Mizuno Y, Nagino T, Imai Y, Adachi N, Horikoshi M, Nagai R (2003) Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain. Mol Cell Biol 23:8528–8541PubMedCrossRefGoogle Scholar
  17. Munemasa Y, Suzuki T, Aizawa K, Miyamoto S, Imai Y, Matsumura T, Horikoshi M, Nagai R (2008) Promoter region-specific histone incorporation by the novel histone chaperone ANP32B and DNA-binding factor KLF5. Mol Cell Biol 28:1171–1181PubMedCrossRefGoogle Scholar
  18. Nardini M, Spano S, Cericola C, Pesce A, Massaro A, Corda D, Bolognesi M (2003) CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO J 22:3122–3130PubMedCrossRefGoogle Scholar
  19. Nielsen SJ, Præstegaard M, Jørgensen HF, Clark BFC (1998) Different Sp1 family members differentially affect transcription from the human elongation factor 1 A-1 gene promoter. Biochem J 333:511–517PubMedGoogle Scholar
  20. Nomura M, Uda-Tochio H, Murai K, Mori N, Nishimura Y (2005) The neural repressor NRSF/ REST binds the PAH1 domain of the Sin3 co-repressor by using its distinct short hydrophobic helix. J Mol Biol 354:903–915PubMedCrossRefGoogle Scholar
  21. Pandya K, Townes TM (2002) Basic residues within the Krüppel zinc finger DNA binding domains are the critical nuclear localization determinants of EKLF/KLF-1. J Biol Chem 277:16304–16312PubMedCrossRefGoogle Scholar
  22. Philipsen S, Suske G (1999) A tale of three fingers: the family of mammalian SP/XKLF transcription factors. Nucleic Acids Res 27:2991–3000PubMedCrossRefGoogle Scholar
  23. Ptashne M (1988) How eukaryotic transcriptional activators work. Nature 335:683–689PubMedCrossRefGoogle Scholar
  24. Sahu SC, Swanson KA, Kang RS, Huang K, Brubaker K, Ratcliff K, Radhakrishnan I (2008) Conserved themes in target recognition by the PAH1 and PAH2 domains of the Sin3 transcrip-tional co-repressor. J Mol Biol 375:144–1456CrossRefGoogle Scholar
  25. Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 92:10467–10471PubMedCrossRefGoogle Scholar
  26. Shi Y, Sawada J, Sui G, Affarel B, Whetstine JR, Lan F, Ogawa H, Luke MP, Nakatani Y, Shi Y (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422:735–738PubMedCrossRefGoogle Scholar
  27. Silverstein RA, Ekwall K (2005) Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet 47:1–17PubMedCrossRefGoogle Scholar
  28. Suzuki T, Nishi T, Nagino T, Sasaki K, Aizawa K, Kada N, Sawaki D, Munemasa Y, Matsumura T, Muto S, Sata M, Miyagawa K, Horikoshi M, Nagai R (2007) Functional interaction between the transcription factor Krüppel-like factor 5 and Poly(ADP-ribose) polymerase-1 in cardiovascular apoptosis. J Biol Chem 282:9895–9901PubMedCrossRefGoogle Scholar
  29. Swanson KA, Knoepfler PS, Huang K, Kang RS, Cowley SM, Laherty CD, Eisenman RN, Radhakrishnan I (2004) HBP1 and Mad1 repressors bind the Sin3 co-repressor PAH2 domain with opposite helical orientations. Nat Struct Mol Biol 11:738–746PubMedCrossRefGoogle Scholar
  30. Turner J, Crossley M (1998) Cloning and characterization of mCtBP2, a co-repressor that associates with basic Krüppel-like factor and other mammalian transcriptional regulators. EMBO J 17:5129–5140PubMedCrossRefGoogle Scholar
  31. Turner J, Crossley M (2001) The CtBP family: enigmatic and enzymatic transcriptional co-repressors. BioEssays 23:683–690PubMedCrossRefGoogle Scholar
  32. van Vliet J, Turner J, Crossley M (2000) Human Krüppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res 28:1955–1962PubMedCrossRefGoogle Scholar
  33. Wolfe SA, Nekludova L, Pabo CO (1999) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212CrossRefGoogle Scholar
  34. Zhang JS, Moncrieffe MC, Kaczynski J, Ellenrieder V, Prendergast FG, Urrutia R (2001) A conserved α-helical motif mediates the interaction of Sp1-like transcriptional repressors with the co-repressor mSin3A. Mol Cell Biol 21:5041–5049PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Toshio Nagashima
    • 1
  • Fumiaki Hayashi
    • 1
  • Takashi Umehara
    • 1
  • Shigeyuki Yokoyama
    • 1
    • 2
  1. 1.RIKEN Systems and Structural Biology CenterTsurumiJapan
  2. 2.Department of Biophysics and Biochemistry, Graduate School of ScienceThe University of TokyoBunkyo-kuJapan

Personalised recommendations