Krüppel-like Factors KLF2, KLF4, and KLF5: Central Regulators of Smooth Muscle Function

  • Christopher W. Moehle
  • Gary K. Owens


The vascular smooth muscle cell (SMC) plays a vital role in mammalian physiology through its regulation of blood pressure via contraction and relaxation. In response to vascular injury, it is capable of rapidly and reversibly modulating its pheno-type to a cell type capable of performing a number of functions key to wound healing and vascular inflammation including migration, proliferation, matrix synthesis, chem-okine production, and protein synthesis. Recent work has identified three Krüppel-like factors—KLF2, KLF4, KLF5—as intricately involved in all of these processes. This review provides a brief overview of the role these factors play in regulating these and other key SMC functions.


Serum Response Factor Neointima Formation Phenotypic Switching KLF4 Expression Smooth Muscle Cell Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam PJ, Regan CP, Hautmann MB, and Owens GK (2000) Positive- and negative-acting Kruppel-like transcription factors bind a transforming growth factor β control element required for expression of the smooth muscle cell differentiation marker SM22α in vivo. J. Biol Chem. 275:37798–37806PubMedCrossRefGoogle Scholar
  2. Atkins GB, Wang Y, Mahabeleshwar GH, Shi H, Gao H, Kawanami D, Natesan V, Lin Z, Simon DI, and Jain MK (2008) Hemizygous Deficiency of Kruppel- Like Factor 2 Augments Experimental Atherosclerosis. Circ. Res. 103;690–693PubMedCrossRefGoogle Scholar
  3. Autieri MV (2008) Kruppel-Like Factor 4: Transcriptional Regulator of Proliferation, or Inflammation, or Differentiation, or All Three? Circ Res 102:1455–1457PubMedCrossRefGoogle Scholar
  4. Bafford R, Sui XX, Wang G, and Conte M (2006) Angiotensin II and tumor necrosis factor-α upregulate survivin and Kruppel-like factor 5 in smooth muscle cells: Potential relevance to vein graft hyperplasia. Surgery 140:289–296PubMedCrossRefGoogle Scholar
  5. Buetow BS, Tappan KA, Crosby JR, Seifert RA, and Bowen-Pope DF (2003) Chimera Analysis Supports a Predominant Role of PDGFRβ in Promoting Smooth-Muscle Cell Chemotaxis after Arterial Injury. Am J Pathol 163:979–984PubMedGoogle Scholar
  6. Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, and Cao Y (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9:604–613PubMedCrossRefGoogle Scholar
  7. Chai Y, Jiang X, Ito Y, Bringas P, Jr., Han J, Rowitch DH, Soriano P, McMahon AP, and Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679PubMedGoogle Scholar
  8. Das H, Kumar A, Lin Z, Patino WD, Hwang PM, Feinberg MW, Majumder PK, and Jain MK (2006) Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc. Natl. Acad. Sci. U.S.A 103:6653–6658PubMedCrossRefGoogle Scholar
  9. de Martin R, Hoeth M, Hofer-Warbinek R, and Schmid JA (2000) The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol 20:83E–E88PubMedGoogle Scholar
  10. Dekker RJ, van SS, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, and Horrevoets AJ (2002) Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100:1689–1698PubMedCrossRefGoogle Scholar
  11. Dekker RJ, Boon RA, Rondaij MG, Kragt A, Volger OL, Elderkamp YW, Meijers JCM, Voorberg J, Pannekoek H, and Horrevoets AJG (2006) KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood 107:4354–4363PubMedCrossRefGoogle Scholar
  12. Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, Lu MM, Owens GK, and Parmacek MS (2003) Myocardin Is a Critical Serum Response Factor Cofactor in the Transcriptional Program Regulating Smooth Muscle Cell Differentiation. Mol. Cell. Biol. 23:2425–2437PubMedCrossRefGoogle Scholar
  13. Feinberg MW, Cao Z, Wara AK, Lebedeva MA, SenBanerjee S, and Jain MK (2005) Kruppel-like Factor 4 Is a Mediator of Proinflammatory Signaling in Macrophages. J. Biol. Chem. 280:38247–38258PubMedCrossRefGoogle Scholar
  14. Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N, Lindblom P, Shani M, Zicha D, and Adams RH (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124:161–173PubMedCrossRefGoogle Scholar
  15. Fujiu K, Manabe I, Ishihara A, Oishi Y, Iwata H, Nishimura G, Shindo T, Maemura K, Kagechika H, Shudo K, and Nagai R (2005) Synthetic Retinoid Am80 Suppresses Smooth Muscle Phenotypic Modulation and In-Stent Neointima Formation by Inhibiting KLF5. Circ. Res. 97:1132–1141PubMedCrossRefGoogle Scholar
  16. Hamik A, Lin Z, Kumar A, Balcells M, Sinha S, Katz J, Feinberg MW, Gerszten RE, Edelman ER, and Jain MK (2007) Kruppel-like Factor 4 Regulates Endothelial Inflammation. J.Biol. Chem. 282:13769–13779PubMedCrossRefGoogle Scholar
  17. Hoshino Y, Kurabayashi M, Kanda T, Hasegawa A, Sakamoto H, Okamoto Ei, Kowase K, Watanabe N, Manabe I, Suzuki T, Nakano A, Takase Si, Wilcox JN, and Nagai R (2000) Regulated expression of the BTEB2 transcription factor in vascular smooth muscle cells: Analysis of developmental and pathological expression profiles shows implications as a predictive factor for restenosis. Circulation 102:2528–2534PubMedGoogle Scholar
  18. Huang J, Cheng L, Li J, Chen M, Zhou D, Lu MM, Proweller A, Epstein JA, and Parmacek MS (2008) Myocardin regulates expression of contractile genes in smooth muscle cells and is required for closure of the ductus arteriosus in mice. J. Clin. Invest 118:515–525PubMedGoogle Scholar
  19. Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, and Ng HH (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10:353–360PubMedCrossRefGoogle Scholar
  20. Kano MR, Morishita Y, Iwata C, Iwasaka S, Watabe T, Ouchi Y, Miyazono K, and Miyazawa K (2005) VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRβ signaling. J Cell Sci 118:3759–3768PubMedCrossRefGoogle Scholar
  21. Katz JP, Perreault N, Goldstein BG, Lee CS, Labosky PA, Yang VW, and Kaestner KH (2002) The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 129:2619–2628PubMedGoogle Scholar
  22. Kawai-Kowase K, Kurabayashi M, Hoshino Y, Ohyama Y, and Nagai R (1999) Transcriptional Activation of the Zinc Finger Transcription Factor BTEB2 Gene by Egr-1 Through Mitogen-Activated Protein Kinase Pathways in Vascular Smooth Muscle Cells. Circ Res 85:787–795PubMedGoogle Scholar
  23. Kawai-Kowase K and Owens GK (2007) Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol 292:C59–C69PubMedCrossRefGoogle Scholar
  24. Knipp BS, Ailawadi G, Ford JW, Peterson DA, Eagleton MJ, Roelofs KJ, Hannawa KK, Deogracias MP, Ji B, Logsdon C, Graziano KD, Simeone DM, Thompson RW, Henke PK, Stanley JC, and Upchurch GR, Jr. (2004) Increased MMP-9 expression and activity by aortic smooth muscle cells after nitric oxide synthase inhibition is associated with increased nuclear factor-kappaB and activator protein-1 activity. J. Surg. Res. 116:70–80PubMedCrossRefGoogle Scholar
  25. Kozaki K, Kaminski WE, Tang J, Hollenbach S, Lindahl P, Sullivan C, Yu JC, Abe K, Martin PJ, Ross R, Betsholtz C, Giese NA, and Raines EW (2002) Blockade of Platelet-Derived Growth Factor or Its Receptors Transiently Delays but Does Not Prevent Fibrous Cap Formation in ApoE Null Mice. Am J Pathol 161:1395–1407PubMedGoogle Scholar
  26. Kumekawa M, Fukuda G, Shimizu S, Konno K, and Odawara M (2008) Inhibition of monocyte chemoattractant protein-1 by Kruppel-like factor 5 small interfering RNA in the tumor necrosis factor-α-activated human umbilical vein endothelial cells. Biol Pharm. Bull. 31:1609–1613PubMedCrossRefGoogle Scholar
  27. Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, and Leiden JM (1997) The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev. 11:2996–3006PubMedCrossRefGoogle Scholar
  28. Lee JS, Yu Q, Shin JT, Sebzda E, Bertozzi C, Chen M, Mericko P, Stadtfeld M, Zhou D, Cheng L, Graf T, MacRae CA, Lepore JJ, Lo CW, and Kahn ML (2006) Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Developmental Cell 11:845–857PubMedCrossRefGoogle Scholar
  29. Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, and Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 8:1875–1887PubMedCrossRefGoogle Scholar
  30. Li L, Miano JM, Cserjesi P, and Olson EN (1996) SM22α, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis. Circ. Res. 78:188–195PubMedGoogle Scholar
  31. Lindahl P, Johansson BR, Leveen P, and Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245PubMedCrossRefGoogle Scholar
  32. Liu Y, Sinha S, McDonald OG, Shang Y, Hoofnagle MH, and Owens GK (2005) Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J. Biol. Chem. 280:9719–9727PubMedCrossRefGoogle Scholar
  33. Liu Y, Sinha S, and Owens G (2003) A Transforming Growth Factor-β Control element required for SM α-actin expression in vivo also partially mediates GKLF-dependent transcriptional repression. J.Biol.Chem. 278:48004–48011PubMedCrossRefGoogle Scholar
  34. Loppnow H, Werdan K, and Buerke M (2008) Vascular cells contribute to atherosclerosis by cytokine- and innate-immunity-related inflammatory mechanisms. Innate. Immun. 14:63–87PubMedCrossRefGoogle Scholar
  35. Marumo T, Schini-Kerth VB, Fisslthaler B, and Busse R (1997) Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-κB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation 96:2361–2367PubMedGoogle Scholar
  36. Matsumura T, Suzuki T, Aizawa K, Munemasa Y, Muto S, Horikoshi M, and Nagai R (2005) The Deacetylase HDAC1 Negatively Regulates the Cardiovascular Transcription Factor Kruppel-like Factor 5 through Direct Interaction. J. Biol. Chem. 280:12123–12129PubMedCrossRefGoogle Scholar
  37. McDonald OG and Owens GK (2007) Programming smooth muscle plasticity with chromatin dynamics. Circ. Res. 100:1428–1441PubMedCrossRefGoogle Scholar
  38. McDonald OG, Wamhoff BR, Hoofnagle MH, and Owens GK (2006) Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. Journal of Clinical Investigation. 116(1):36–48PubMedCrossRefGoogle Scholar
  39. Miyamoto S, Suzuki T, Muto S, Aizawa K, Kimura A, Mizuno Y, Nagino T, Imai Y, Adachi N, Horikoshi M, and Nagai R (2003) Positive and Negative Regulation of the Cardiovascular Transcription Factor KLF5 by p300 and the Oncogenic Regulator SET through Interaction and Acetylation on the DNA-Binding Domain. Mol. Cell. Biol. 23:8528–8541PubMedCrossRefGoogle Scholar
  40. Pidkovka NA, Cherepanova OA, Yoshida T, Alexander MR, Deaton RA, Thomas JA, Leitinger N, and Owens GK (2007) Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ. Res. 101:792–801PubMedCrossRefGoogle Scholar
  41. Rong JX, Shapiro M, Trogan E, and Fisher EA (2003) Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc. Natl. Acad. Sci. U.S.A 100:13531–13536PubMedCrossRefGoogle Scholar
  42. Sano H, Sudo T, Yokode M, Murayama T, Kataoka H, Takakura N, Nishikawa S, Nishikawa SI, and Kita T (2001) Functional blockade of platelet-derived growth factor receptor-β but not of receptor-α prevents vascular smooth muscle cell accumulation in fibrous cap lesions in Apolipoprotein E-deficient mice. Circulation 103:2955–2960PubMedGoogle Scholar
  43. Segre JA, Bauer C, and Fuchs E (1999) Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat. Genet. 22:356–360PubMedCrossRefGoogle Scholar
  44. SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, Michel TM, Gimbrone MA, Jr., Garcia-Cardena G, and Jain MK (2004) KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J. Exp. Med. 199:1305–1315PubMedCrossRefGoogle Scholar
  45. Shindo T, Manabe I, Fukushima Y, Tobe K, Aizawa K, Miyamoto S, Kawai-Kowase K, Moriyama N, Imai Y, Kawakami H, Nishimatsu H, Ishikawa T, Suzuki T, Morita H, Maemura K, Sata M, Hirata Y, Komukai M, Kagechika H, Kadowaki T, Kurabayashi M, and Nagai R (2002) Kruppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. Nat Med 8:856–863PubMedGoogle Scholar
  46. Shinoda Y, Ogata N, Higashikawa A, Manabe I, Shindo T, Yamada T, Kugimiya F, Ikeda T, Kawamura N, Kawasaki Y, Tsushima K, Takeda N, Nagai R, Hoshi K, Nakamura K, Chung Ui, and Kawaguchi H (2008) Kruppel-like factor 5 causes cartilage degradation through trans-activation of matrix metalloproteinase 9. J. Biol. Chem. 283:24682–24689PubMedCrossRefGoogle Scholar
  47. Takahashi K and Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  48. Thomas JA, Deaton RA, Hastings NE, Shang Y, Moehle CW, Eriksson UJ, Topouzis S, Wamhoff BR, Blackman BR, and Owens GK (2008) PDGF-DD, a novel mediator of smooth muscle cell phenotypic modulation, is upregulated in endothelial cells exposed to atherosclerotic-prone flow patterns. Am. J. Physiol Heart Circ. Physiol 296:H442–H452PubMedCrossRefGoogle Scholar
  49. Wang Z, Wang DZ, Pipes GC, and Olson EN (2003) Myocardin is a master regulator of smooth muscle gene expression. Proc. Natl. Acad. Sci. U.S.A 100:7129–7134PubMedCrossRefGoogle Scholar
  50. Wu J, Bohanan CS, Neumann JC, and Lingrel JB (2008) KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration. J. Biol. Chem. 283:3942–3950PubMedCrossRefGoogle Scholar
  51. Yoshida T, Gan Q, and Owens GK (2008a) Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am. J. Physiol. Cell Physiol. 295:1175–C1182CrossRefGoogle Scholar
  52. Yoshida T, Gan Q, Shang Y, and Owens GK (2007) Platelet-derived growth factor-BB represses smooth muscle cell marker genes via changes in binding of MKL factors and histone deacety-lases to their promoters. Am. J. Physiol. Cell Physiol. 292:C886–C895PubMedCrossRefGoogle Scholar
  53. Yoshida T, Kaestner KH, and Owens GK (2008b) Conditional deletion of kruppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointi-mal formation following vascular injury. Circ. Res. 102:1548–1557CrossRefGoogle Scholar
  54. Yoshida T, Sinha S, Dandre F, Wamhoff BR, Hoofnagle MH, Kremer BE, Wang DZ, Olson EN, and Owens GK (2003) Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes. Circ. Res. 92:856–864PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Christopher W. Moehle
    • 1
    • 2
  • Gary K. Owens
    • 1
    • 2
  1. 1.Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleUSA
  2. 2.Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations