Advertisement

Krüppel-like Factors in the Heart

  • Daiji Kawanami
  • Saptarsi M. Haldar
  • Mukesh K. Jain

Abstract

Despite the development of numerous therapies, heart disease is a major source of morbidity, mortality, and economic burden to society worldwide. A better understanding of the molecular underpinnings that lead to heart failure are likely to facilitate the development of novel therapies. The Krüppel-like factor (KLF) family of zinc finger transcription factors play important roles in modulating cellular functions in a broad range of mammalian cell types, and accumulating evidence demonstrates important roles of these factors in cardiovascular biology. This chapter describes our current understanding of the role of the KLF gene family in cardiac biology and the potential for these factors to serve as therapeutic targets.

Keywords

Connective Tissue Growth Factor Cardiac Fibroblast Zinc Finger Transcription Factor Connective Tissue Growth Factor Expression Cardiac Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhikari N, Charles N, Lehmann U et al (2006) Transcription factor and kinase-mediated signaling in atherosclerosis and vascular injury. Curr Atheroscler Rep 8:252–260PubMedCrossRefGoogle Scholar
  2. Ahn YT, Huang B, McPherson L et al (2007) Dynamic interplay of transcriptional machinery and chromatin regulates “late” expression of the chemokine RANTES in T lymphocytes. Mol Cell Biol 27:253–266PubMedCrossRefGoogle Scholar
  3. Akazawa H, Komuro I (2003) Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 92:1079–1088PubMedCrossRefGoogle Scholar
  4. Asano H, Li XS, Stamatoyannopoulos G (2000) FKLF-2: a novel Krüppel-like transcriptional factor that activates globin and other erythroid lineage genes. Blood 95:3578–3584PubMedGoogle Scholar
  5. Bensamoun SF, Hawse JR, Subramaniam M et al (2006) TGFbeta inducible early gene-1 knockout mice display defects in bone strength and microarchitecture. Bone 39: 1244–1251PubMedCrossRefGoogle Scholar
  6. Bhattacharya R, Senbanerjee S, Lin Z et al (2005) Inhibition of vascular permeability factor/ vascular endothelial growth factor-mediated angiogenesis by the Kruppel-like factor KLF2. J Biol Chem 280:28848–28851PubMedCrossRefGoogle Scholar
  7. Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358:2148–2159.PubMedCrossRefGoogle Scholar
  8. Burkart EM, Sambandam N, Han X et al (2007) Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117:3930–3939PubMedGoogle Scholar
  9. Chen MM, Lam A, Abraham JA et al (2000) CTGF expression is induced by TGF- beta in cardiac fibrob-lasts and cardiac myocytes: a potential role in heart fibrosis. J Mol Cell Cardiol 32:1805–1819PubMedCrossRefGoogle Scholar
  10. Chen Y, Blom IE, Sa S et al (2002) CTGF expression in mesangial cells: involvement of SMADs, MAP kinase, and PKC. Kidney Int 62:1149–1159PubMedCrossRefGoogle Scholar
  11. Clerk A, Kemp TJ, Zoumpoulidou G et al (2006) Cardiac myocyte gene expression profiling during H2O2-induced apoptosis. Physiol Genomics 29:118–27PubMedCrossRefGoogle Scholar
  12. Cullingford TE, Butler MJ, Marshall AK et al (2008) Differential regulation of Kruppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: Effects of endothelin-1, oxidative stress and cytokines. Biochim Biophys Acta 1783:1229–1236PubMedCrossRefGoogle Scholar
  13. Czubryt MP, Olson EN (2004) Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. Recent Prog Horm Res 59:105–124PubMedCrossRefGoogle Scholar
  14. Epstein JA, Parmacek MS (2005) Recent advances in cardiac development with therapeutic implications for adult cardiovascular disease. Circulation 112:592–597PubMedCrossRefGoogle Scholar
  15. Feinberg MW, Lin Z, Fisch S et al (2004) An emerging role for Kruppel-like factors in vascular biology. Trends Cardiovasc Med 14:241–246PubMedCrossRefGoogle Scholar
  16. Feng D, Kan YW (2005) The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of beta-like globin genes. Proc Natl Acad Sci U S A 102:9896–9900PubMedCrossRefGoogle Scholar
  17. Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615–622PubMedCrossRefGoogle Scholar
  18. Fisch S, Gray S, Heymans S et al (2007) Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 104:7074–7079PubMedCrossRefGoogle Scholar
  19. Funnell AP, Maloney CA, Thompson LJ et al (2007) Erythroid kruppel-like factor directly activates the basic kruppel-like factor gene in erythroid cells. Mol Cell Biol 27: 2777–2790PubMedCrossRefGoogle Scholar
  20. Gray S, Feinberg MW, Hull S et al (2002) The Kruppel-like factor KLF15 regulates the insulinsensitive glucose transporter GLUT4. J Biol Chem 277:34322–34328PubMedCrossRefGoogle Scholar
  21. Gray S, Wang B, Orihuela Y et al (2007) Regulation of Gluconeogenesis by Kruppel-like Factor 15. Cell Metab 5:305–312PubMedCrossRefGoogle Scholar
  22. Grepin C, Dagnino L, Robitaille L et al (1994) A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription. Mol Cell Biol 14:3115–3129PubMedGoogle Scholar
  23. Grotendorst GR, Okochi H, Hayashi N (1996) A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 7:469–480PubMedGoogle Scholar
  24. Haldar SM, Ibrahim OA, Jain MK (2007) Kruppel-like Factors (KLFs) in muscle biology. J Mol Cell Cardiol 43:1–10PubMedCrossRefGoogle Scholar
  25. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600PubMedCrossRefGoogle Scholar
  26. Jain MK, Ridker PM (2005) Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov 4:977–987PubMedCrossRefGoogle Scholar
  27. Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118:10–24PubMedCrossRefGoogle Scholar
  28. Lavallee G, Andelfinger G, Nadeau M et al (2006) The Kruppel-like transcription factor KLF13 is a novel regulator of heart development. Embo J 25:5201–5213PubMedCrossRefGoogle Scholar
  29. Liang Q, De Windt LJ, Witt SA et al (2001) The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J Biol Chem 276:30245–30253PubMedCrossRefGoogle Scholar
  30. Martin KM, Metcalfe JC, Kemp PR (2001) Expression of Klf9 and Klf13 in mouse development. Mech Dev 103:149–151PubMedCrossRefGoogle Scholar
  31. Molkentin JD, Markham BE (1993) Myocyte-specific enhancer-binding factor (MEF-2) regulates alpha-cardiac myosin heavy chain gene expression in vitro and in vivo. J Biol Chem 268:19512–19520PubMedGoogle Scholar
  32. Mori T, Sakaue H, Iguchi H et al (2005) Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 280:12867–12875PubMedCrossRefGoogle Scholar
  33. Oemar BS, Werner A, Garnier JM et al (1997) Human connective tissue growth factor is expressed in advanced atherosclerotic lesions. Circulation 95:831–839PubMedGoogle Scholar
  34. Oettgen P (2006) Regulation of vascular inflammation and remodeling by ETS factors. Circ Res 99:1159–1166PubMedCrossRefGoogle Scholar
  35. Oishi Y, Manabe I, Tobe K et al (2008) SUMOylation of Kruppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-delta. Nat Med 14:656–666PubMedCrossRefGoogle Scholar
  36. Perry C, Soreq H (2002) Transcriptional regulation of erythropoiesis. Fine tuning of combinatorial multi-domain elements. Eur J Biochem 269:3607–3618PubMedCrossRefGoogle Scholar
  37. Pikkarainen S, Tokola H, Kerkela R et al (2004) GATA transcription factors in the developing and adult heart. Cardiovasc Res 63:196–207PubMedCrossRefGoogle Scholar
  38. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coacti-vator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90PubMedCrossRefGoogle Scholar
  39. Rajamannan NM, Subramaniam M, Abraham TP et al (2007) TGFbeta inducible early gene-1 (TIEG1) and cardiac hypertrophy: Discovery and characterization of a novel signaling pathway. J Cell Biochem 100:315–325PubMedCrossRefGoogle Scholar
  40. Sano M, Minamino T, Toko H et al (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446:444–448PubMedCrossRefGoogle Scholar
  41. Scohy S, Gabant P, Van Reeth T et al (2000) Identification of KLF13 and KLF14 (SP6), novel members of the SP/XKLF transcription factor family. Genomics 70:93–101PubMedCrossRefGoogle Scholar
  42. Sen-Banerjee S, Mir S, Lin Z et al (2005) Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation 112:720–726PubMedCrossRefGoogle Scholar
  43. Shindo T, Manabe I, Fukushima Y et al (2002) Kruppel-like zinc-finger transcription factor KLF5/ BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. Nat Med 8:856–863PubMedGoogle Scholar
  44. Sogawa K, Imataka H, Yamasaki Y et al (1993) cDNA cloning and transcriptional properties of a novel GC box-binding protein, BTEB2. Nucleic Acids Res 21:1527–1532PubMedCrossRefGoogle Scholar
  45. Song A, Chen YF, Thamatrakoln K et al (1999) RFLAT-1: a new zinc finger transcription factor that activates RANTES gene expression in T lymphocytes. Immunity 10:93–103PubMedCrossRefGoogle Scholar
  46. Subramaniam M, Gorny G, Johnsen SA et al (2005) TIEG1 null mouse-derived osteoblasts are defective in mineralization and in support of osteoclast differentiation in vitro. Mol Cell Biol 25:1191–1199PubMedCrossRefGoogle Scholar
  47. Subramaniam M, Harris SA, Oursler MJ et al (1995) Identification of a novel TGF-beta-regulated gene encoding a putative zinc finger protein in human osteoblasts. Nucleic Acids Res 23:4907–4912PubMedCrossRefGoogle Scholar
  48. Subramaniam M, Hefferan TE, Tau K et al (1998) Tissue, cell type, and breast cancer stage-specific expression of a TGF-beta inducible early transcription factor gene. J Cell Biochem 68:226–236PubMedCrossRefGoogle Scholar
  49. Suzuki T, Aizawa K, Matsumura T et al (2005) Vascular implications of the Kruppel-like family of transcription factors. Arterioscler Thromb Vasc Biol 25:1135–1141PubMedCrossRefGoogle Scholar
  50. Tachibana I, Imoto M, Adjei PN et al (1997) Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J Clin Invest 99:2365–2374PubMedCrossRefGoogle Scholar
  51. Tsubone T, Moran SL, Subramaniam M et al (2006) Effect of TGF-beta inducible early gene deficiency on flexor tendon healing. J Orthop Res 24:569–575PubMedCrossRefGoogle Scholar
  52. Wang B, Haldar SM, Lu Y et al (2008) The Kruppel-like factor KLF15 inhibits connective tissue growth factor (CTGF) expression in cardiac fibroblasts. J Mol Cell Cardiol (2008) 45:193–7PubMedCrossRefGoogle Scholar
  53. Watanabe N, Kurabayashi M, Shimomura Y et al (1999) BTEB2, a Kruppel-like transcription factor, regulates expression of the SMemb/Nonmuscle myosin heavy chain B (SMemb/ NMHC-B) gene. Circ Res 85:182–191PubMedGoogle Scholar
  54. Wei D, Kanai M, Huang S et al (2006) Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 27:23–31PubMedCrossRefGoogle Scholar
  55. Xu J, Gong NL, Bodi I et al (2006) Myocyte enhancer factors 2A and 2C induce dilated cardio-myopathy in transgenic mice. J Biol Chem 281:9152–9162PubMedCrossRefGoogle Scholar
  56. Zhou M, McPherson L, Feng D et al (2007) Kruppel-like transcription factor 13 regulates T lymphocyte survival in vivo. J Immunol 178:5496–5504PubMedGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Daiji Kawanami
    • 1
  • Saptarsi M. Haldar
    • 1
  • Mukesh K. Jain
    • 1
  1. 1.Case Cardiovascular Research Institute, Case Western Reserve University School of MedicineUniversity Hospitals Harrington-McLaughlin Heart & Vascular InstituteClevelandUSA

Personalised recommendations