Krüppel-like Factors in Stem Cell Biology

  • Masatsugu Ema
  • Satoru Takahashi
  • Yoshiaki Fujii-Kuriyama


Embryonic stem (ES) cells are derived from the blastocyst and have the potential to give rise to derivatives of each germ layer. Induced pluripotent stem (iPS) cells can be derived from lineage-restricted cells, such as fibroblasts and lymphocytes, by forced expression of specific transcription factors. iPS cells are transcriptionally and epigenetically similar to ES cells. Although recent studies indicate that Krüppel-like factors (KLFs) are essential for both maintenance of ES cell self-renewal and reprogramming of somatic cells into a pluripotent state, the molecular mechanism of these processes remains unknown. Thus, understanding the molecular mechanism of ES cell self-renewal and somatic cell reprogramming by Klfs is important for the efficient generation of patient-specific pluripotent stem cells and for the development of regenerative medicine.


Embryonic Stem Cell Pluripotent Stem Cell Inner Cell Mass Stem Cell Biology Pluripotent State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140PubMedCrossRefGoogle Scholar
  2. Basu, P., Lung, T.K., Lemsaddek, W., Sargent, T.G., Williams, D.C. Jr, Basu, M., Redmond, L.C., Lingrel, J.B., Haar, J.L., and Lloyd, J.A. (2007). EKLF and KLF2 have compensatory roles in embryonic ß-globin gene expression and primitive erythropoiesis. Blood 110, 3417–3425PubMedCrossRefGoogle Scholar
  3. Brambrink, T., Foreman, R., Welstead, G. G., Lengner, C. J., Wernig, M., Suh, H., and Jaenisch, R. (2008). Sequential Expression of Pluripotency Markers during Direct Reprogramming of Mouse Somatic Cells. Cell Stem Cell 2, 151–159PubMedCrossRefGoogle Scholar
  4. Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S. M., Howlett, S. K., Clarkson, A., Ahrlund-Richter, L., Pedersen, R. A., and Vallier, L. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195.PubMedCrossRefGoogle Scholar
  5. Cartwright, P., McLean, C., Sheppard, A., Rivett, D., Jones, D., and Dalton, S. (2005). LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132, 885–896.PubMedCrossRefGoogle Scholar
  6. Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S. and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655.PubMedCrossRefGoogle Scholar
  7. Ema, M., Mori, D., Niwa, H., Hasegawa, Y., Yamanaka, Y., Hitoshi, S., Mimura, J., Kawabe, Y., Hosoya, T., Morita, M., Shimosato, D., Uchida, K., Suzuki, N., Yanagisawa, J., Sogawa, K., Rossant, J., Yamamoto, M., Takahashi, S., and Fujii-Kuriyama, Y. (2008) Krüppel-like factor 5 is essential for blastocyst development and the normal self-renewal of mouse ESCs. Cell Stem Cell. 3, 555–567.PubMedCrossRefGoogle Scholar
  8. Evans, M. J. and Kaufman, M. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.PubMedCrossRefGoogle Scholar
  9. Ghaleb, A. M., Nandan, M. O., Chanchevalap, S., Dalton, W. B., Hisamuddin, I. M., and Yang, V. W. (2005). Kruppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res. 15, 92–96PubMedCrossRefGoogle Scholar
  10. Imataka, H., Sogawa, K., Yasumoto, K., Kikuchi, Y., Sasano, K., Kobayashi, A., Hayami, M., and Fujii-Kuriyama. Y. (1992). Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene. EMBO J 11, 3663–3671.PubMedGoogle Scholar
  11. Jiang, J., Chan, Y.S., Loh, Y.H., Cai, J., Tong, G.Q., Lim, C.A., Robson, P., Zhong, S., and Ng, H.H. (2008). A core KLF circuitry regulates self-renewal of embryonic stem cells. Nat. Cell Biol. 10, 353–360.PubMedCrossRefGoogle Scholar
  12. Katz, J. P., Perreault, N., Goldstein, B. G., Lee, C. S., Labosky, P. A., Yang, V. W., and Kaestner, K. H. (2002). The zinc-finger transcription factor KLF4 is required for terminal differentiation of goblet cells in the colon. Development 129, 2619–2628PubMedGoogle Scholar
  13. Kim, J., Chu, J., Shen, X., Wang, J., and Orkin, S. H. (2008). An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells. Cell 132, 1049–1061PubMedCrossRefGoogle Scholar
  14. Li, Y., McClintick, J., Edenberg, H.J., Yoder, M.C., and Chan, R.J., (2005). Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor KLF4. Blood 105, 635–637.PubMedCrossRefGoogle Scholar
  15. Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., Stadtfeld, M., Yachechko, R., Tchieu, J., Jaenisch, R., Plath, K., and Hochedlinger, K. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 1, 55–70.PubMedCrossRefGoogle Scholar
  16. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638.PubMedCrossRefGoogle Scholar
  17. Matsuda, T., Nakamura, T., Nakao, K., Arai, T., Katsuki, M., Heike, T. and Yokota, T. (1999). STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. 18, 4261–4269.PubMedCrossRefGoogle Scholar
  18. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M. and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642.PubMedCrossRefGoogle Scholar
  19. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106.PubMedCrossRefGoogle Scholar
  20. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391.PubMedCrossRefGoogle Scholar
  21. Niwa H, Burdon T, Chambers I, and Smith A. (1998). Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060.PubMedCrossRefGoogle Scholar
  22. Niwa, H., Miyazaki, J., and Smith, A. G. (2000). Quantitative expression of Oct3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet. 24, 372–376.PubMedCrossRefGoogle Scholar
  23. Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W., and Daley, G.Q. (2007). Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146.PubMedCrossRefGoogle Scholar
  24. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. and Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63.PubMedCrossRefGoogle Scholar
  25. Segre, J.A., Bauer, C., and Fuchs, E. (1999). KLF4 is a transcription factor required for establishing the barrier function of the skin, Nat. Genet 22, 356–360Google Scholar
  26. Shindo, T., Manabe, I., Fukushima, Y., Tobe, K., Aizawa, K., Miyamoto, S., Kawai-Kowase, K., Moriyama, N., Imai, Y., Kawakami, H., Nishimatsu, H., Ishikawa, T., Suzuki, T., Morita, H., Maemura, K., Sata, M., Hirata, Y., Komukai, M., Kagechika, H., Kadowaki, T., Kurabayashi, M., and Nagai, R. (2002). Kruppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. Nat. Med. 8, 856–863.PubMedGoogle Scholar
  27. Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J., Stahl, M., and Rogers, D. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypep-tides. Nature 336, 688–690.PubMedCrossRefGoogle Scholar
  28. Sogawa, K., Imataka, H., Yamasaki, Y., Kusume, H., Abe, H., and Fujii-Kuriyama. Y. (1993). cDNA cloning and transcriptional properties of a novel GC box-binding protein, BTEB2. Nucleic Acids Res. 21, 1527–1532.PubMedCrossRefGoogle Scholar
  29. Stadtfeld, M., Maherali, N., Breault, D. T., and Hochedlinger, K. (2008). Defining Molecular Cornerstones during Fibroblast to iPS Cell Reprogramming in Mouse. Cell Stem Cell 2, 230–240PubMedCrossRefGoogle Scholar
  30. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.PubMedCrossRefGoogle Scholar
  31. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–372.PubMedCrossRefGoogle Scholar
  32. Tesar, P.J., Chenoweth, J.G., Brook, F.A., Davies, T.J., Evans, E.P., Mack, D.L., Gardner, R.L., McKay, R.D. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199.PubMedCrossRefGoogle Scholar
  33. Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B.E., and Jaenisch, R. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324.PubMedCrossRefGoogle Scholar
  34. Williams, R. L., Hilton, D. J., Pease, S., Willson, T. A., Stewart, C. L., Gearing, D. P., Wagner, E. F., Metcalf, D., Nicola, N. A., and Gough, N. M. (1988). Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687.PubMedCrossRefGoogle Scholar
  35. Ying, Q.-L., Nichols, J., Chambers, I. and Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292.PubMedCrossRefGoogle Scholar
  36. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L.,Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I. I., and Thomson, J. A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.PubMedCrossRefGoogle Scholar
  37. Ziemer, L. T., Pennica, D., and Levine, A. J. (2001). Identification of a murine homolog of the human BTEB2 transcriptional factor as a beta-catenin-independent Wnt-1 responsive gene. Mol. Cell. Biol. 21, 562–574.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Masatsugu Ema
    • 1
  • Satoru Takahashi
    • 1
  • Yoshiaki Fujii-Kuriyama
    • 2
    • 3
  1. 1.Department of Anatomy and Embryology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
  2. 2.SORST, Japan Science and Technology AgencyKawaguchiJapan
  3. 3.TARA (Tsukuba Advanced Research Alliance) Center, University of TsukubaTsukubaJapan

Personalised recommendations