Advertisement

Modification of Biliary Carcinogenesis

  • Yoshito Ikematsu
  • Tsutomu Tomioka
  • Tsukasa Tsunoda
  • Yoshitsugu Tajima
  • Takashi Kanematsu

Cholecystokinin (CCK) exerts a trophic action on the gastrointestinal tract and on the pancreaticobiliary system. We evaluated the effects of CCK on biliary carcinogenesis in hamsters. Hamsters treated with N-nitrosobis(2-oxopropyl)amine (BOP) were divided into the following four groups: group 1, given a subcutaneous injection of hydrolyzed gelatin, a solvent of CCK; groups 2 and 3, given CCK 2.5 and 25 μg/kg, respectively; and group 4, given loxiglumide, a CCK receptor antagonist. CCK significantly exacerbated the carcinogenetic effect of BOP in the intra- and extrahepatic bile ducts, but not in the gallbladder or pancreas. Loxiglumide exerted an inhibitory effect on carcinogenesis in the intrahepatic bile duct.

Keywords

Bile Duct Bile Acid Extrahepatic Bile Duct Intrahepatic Bile Duct Common Duct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsunoda T, Eto T, Koga M, Tomioka T, Motoshima K, Yamaguchi T, Izawa K, Tsuchiya R. Early carcinoma of the extrahepatic bile duct. Jpn J Surg 1989 19(6):691–698.PubMedCrossRefGoogle Scholar
  2. 2.
    Lamote J, Willems G. DNA synthesis, cell proliferation index in normal and abnormal gallbladder epithelium. Microsc Res Tech 1997 38:609–615.PubMedCrossRefGoogle Scholar
  3. 3.
    Barrowman JA. The tropic action of gastro-intestinal hormones. Digestion 1975 12(2):92–104.PubMedCrossRefGoogle Scholar
  4. 4.
    Lamote J, Putz P, Willems G. Effect of cholecystokinin-octapeptide, caerulein, and pentagastrin on epithelial cell proliferation in the murine gallbladder. Gastroenterology 1982 83(2):371–377.PubMedGoogle Scholar
  5. 5.
    Douglas BR, Woutersen RA, Jansen JB, de Jong AJ, Rovati LC, Lamers CB. Influence of cholecystokinin antagonist on the effects of cholecystokinin and bombesin on azaserine-induced lesions in rat pancreas. Gastroenterology 1989 96(2 Pt 1):462–469.PubMedGoogle Scholar
  6. 6.
    Douglas BR, Woutersen RA, Jansen JB, de Jong AJ, Rovati LC, Lamers CB. Modulation by CR-1409 (lorglumide), a cholecystokinin receptor antagonist, of trypsin inhibitor-enhanced growth of azaserine-induced putative preneoplastic lesions in rat pancreas. Cancer Res 1989 49(9):2438–2441.PubMedGoogle Scholar
  7. 7.
    Evers BM, Gomez G, Townsend CM Jr, Rajaraman S, Thompson JC. Endogenous cholecystokinin regulates growth of human cholangiocarcinoma. Ann Surg 1989 210(3):317–322.PubMedCrossRefGoogle Scholar
  8. 8.
    Tajima Y, Eto T, Tsunoda T, Tomioka T, Inoue K, Fukahori T, Kanematsu T. Induction of extra-hepatic biliary carcinoma by N-nitrosobis(2-oxopropyl)amine in hamsters received cholecystodu-odenostomy with dissection of the common duct. Jpn J Cancer Res 1994 85:780–788.PubMedGoogle Scholar
  9. 9.
    Solomon TE, Petersen H, Elashoff J, Grossman MI. Interaction of caerulein and secretin on pancreatic size and composition in rat. Am J Physiol 1978 235(6):E714–19.PubMedGoogle Scholar
  10. 10.
    Setnikar I, Bani M, Cereda R, Chisté R, Makovec F, Pacini MA, Revel L. Anticholecystokinin activities of loxiglumide. Arzneimittelforschung 1987 37(10):1168–1171.PubMedGoogle Scholar
  11. 11.
    Liddle RA, Goldfine ID, Williams JA. Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol. Gastroenterology 1984 87(3):542–549.PubMedGoogle Scholar
  12. 12.
    Otsuki M, Okabayashi Y, Nakamura T, Fujii M, Tani S, Fujisawa T, Koide M, Baba S. Bioassay of plasma cholecystokinin in rat and human: inhibition of protein synthesis prevents the decrease in the sensitivity and responsiveness of isolated rat pancreatic acini to CCK-8. Pancreas 1989 4:447–451.PubMedCrossRefGoogle Scholar
  13. 13.
    Douglas BR, Woutersen RA, Jansen JBMJ, Rovati LC, Lamers CBHW. Study into the role of cholecystokinin in bombesin-stimulated pancreatic growth in rats and hamsters. Eur J Pharmacol 1989 161:209–214.PubMedCrossRefGoogle Scholar
  14. 14.
    Meijers M, van Garderen-Hoetmer A, Lamers CBHW, Rovati LC, Jansen JBMJ, Woutersen RA. Role of cholecystokinin in the development of BOP-induced pancreatic lesions in hamsters. Carcinogenesis 1990 11:2223–2226.PubMedCrossRefGoogle Scholar
  15. 15.
    Chu M, Rehfeld JF, Borch K. Chronic endogenous hypercholecystokininemia promotes pancreatic carcinogenesis in the hamster. Carcinogenesis 1997 18:315–320.PubMedCrossRefGoogle Scholar
  16. 16.
    Meijers M, van Garderen-Hoetmer A, Lamers CBHW, Rovati LC, Jansen JBMJ, Woutersen RA. Effect of bombesin on the development of N-nitrosobis(2-oxopropyl)amine-induced pancreatic lesions in hamsters. Cancer Lett 1991 59:45–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Pour PM, Lawson T, Helgeson S, Dennelly T, Stepan K. Effect of cholecystokinin on pancreatic carcinogenesis in the hamster model. Carcinogenesis 1988 9:597–601.PubMedCrossRefGoogle Scholar
  18. 18.
    Scarpelli DG, Rao MS, Subbarao V. Augmentation of carcino-geniesis by N-nitrosobis (2-oxopropyl)amine administered during S phase of the cell cycle in regenerating hamster pancreas. Cancer Res 1983 43:611–616.PubMedGoogle Scholar
  19. 19.
    Flanigan DP. Biliary cysts. Ann Surg 1975 182:635–643.PubMedCrossRefGoogle Scholar
  20. 20.
    Tsuchiya R, Harada N, Ito T, Furukawa M, Yoshihiro I, Kusano T, Uchimura M. Malignant tumors in choledochal cysts. Ann Surg 1977 186:22–28.PubMedCrossRefGoogle Scholar
  21. 21.
    Tada M, Omata M, Ohto M. High incidence of ras gene mutation in intrahepatic cholangiocar-cinoma. Cancer 1992 69:1115–1118.PubMedGoogle Scholar
  22. 22.
    Schwarzendrube J, Niederau M, Luthen R, Niederau C. Effects of cholecystokinin-receptor blockade on pancreatic and biliary function in healthy volunteers. Gastroenterology 1991 100:1683–1690.PubMedGoogle Scholar
  23. 23.
    Malesci A, de Fazio C, Festorazzi S, Bonato C, Valentini A, Tacconi M, Rovati L, Setnikar I. Effect of loxiglumide on gallbladder contractile response to caerulein and food in humans. Gastroenterology 1990 98:1307–1310.PubMedGoogle Scholar
  24. 24.
    Konturek JW, Konturek SJ, Kurek A, Bogdal J, Oleksy J, Rovati L. CCK receptor antagonism by loxiglumide and gallbladder contractions in response to cholecystokinin, sham feeding and ordinary feeding in man. Gut 1989 30:1136–1142.PubMedCrossRefGoogle Scholar
  25. 25.
    Nio Y, Tsubono M, Morimoto H, Kawabata K, Masai Y, Hayashi H, Manabe T, Imamura M, Fukumoto M. Loxiglumide (CR-1505), a cholecystokinin antagonist, specifically inhibits the growth of human pancreatic cancer lines xenografted into nude mice. Cancer 1993 72:3599–3606.PubMedCrossRefGoogle Scholar
  26. 26.
    Japanese Pancreaticobiliary Maljunction Meeting. Diagnostic criteria of pancreaticobiliary maljunction. J Hepatobiliary Pancreat Surg 1994 1:219–221Google Scholar
  27. 27.
    Miyazaki M, Takada T, Miyakawa S, Tsukada K, Nagino M, Kondo S, Furuse J, Saito H, Tsuyuguchi T, Chijiiwa K, Kimura F, Yoshitomi H, Nozawa S, Yoshida M, Wada K, Amano H, Miura F. Risk factors for biliary tract and ampullary carcinomas and prophylactic surgery for these factors. J Hepatobiliary Pancreat Surg 2008 15:15–24.PubMedCrossRefGoogle Scholar
  28. 28.
    Sai JK, Suyama M, Kubokawa Y, Nobukawa B. Gallbladder carcinoma associated with pan-creatobiliary reflux. World J Gastroenterol 2006 12:6527–6530.PubMedGoogle Scholar
  29. 29.
    Kimura K, Ohto M, Saisho H, Unozawa T, Tsuchiya Y, Morita M, Ebara M, Matsutani S, Okuda K. Association of gallbladder carcinoma and anomalous pancreaticobiliary ductal union. Gastroenterology 1985 89:1258–1265.PubMedGoogle Scholar
  30. 30.
    Ikematsu Y, Tomioka T, Tajima Y, Tsnoda T, Kanematsu T. Enhancement of biliary carcino-genesis in hamsters by cholecystokinin. Word J Surg 1995 19(6):847–851.CrossRefGoogle Scholar
  31. 31.
    Kamisawa T, Tu Y, Kuwata G, Egawa N, Nakajima H, Tsuruta K, Okamoto A, Matsukawa M. Biliary carcinoma risk in patients with pancreaticobiliary maljunction and the degree of ext-rahepatic bile duct dilatation. Hepatogastroenterology 2006 53:816–818.PubMedGoogle Scholar
  32. 32.
    Koop I, Dorn S, Koop H, Witzleb S, Beglinger C, Schafmayer A, Arnold R. Dissociation of cholecystokinin and pancreaticobiliary response to intraduodenal bile acid and cholesty-ramine in humans. Dig Dis Sci 1991 36:1625–1632.PubMedCrossRefGoogle Scholar
  33. 33.
    Davies HA, Wheeler MH, Psaila J, Rhodes J, Newcombe RG, Jones JM, Procter D, Adrian TE, Bloom SR. Bile exclusion from the duodenum. Its effect on gastric and pancreatic function in the dog. Dig Dis Sci 1985 30:954–960.PubMedCrossRefGoogle Scholar
  34. 34.
    Koop I, Fellgiebel A, Koop H, Schafmayer A, Arnold R. Effect of cholestyramine on plasma cholecystokinin and pancreatic polypeptide levels, and exocrine pancreatic secretion. Eur J Clin Invest 1988 18:517–523.PubMedCrossRefGoogle Scholar
  35. 35.
    Mathews MB, Bernstein RM, Franza BR, Garrels JI. Identity of the proliferating cell nuclear antigen and cyclin. Nature 1984 309:374–376.PubMedCrossRefGoogle Scholar
  36. 36.
    Bravo R, Frank R, Blundell PA, MacDonald BH. Cyclin/PCNA is the auxiliary protein of DNA polymerase delta. Nature 1987 326:515–517.PubMedCrossRefGoogle Scholar
  37. 37.
    Pour P, Takahashi M, Donnelly T, Stepan K. Modification of pancreatic carcinogenesis in the hamster model. IX. Effect of pancreatitis. J Natl Cancer Inst 1983 71:607–613.PubMedGoogle Scholar
  38. 38.
    Ikematsu Y, Tomioka T, Yamanaka S, Tajima Y, Tsunoda T, Kanematsu T. Bilioenterostomy enhances biliary carcinogenesis in hamsters. Carcinogenesis 1996 17:1505–1509.PubMedCrossRefGoogle Scholar
  39. 39.
    Koop I. Regulation of CCK Release by Bile Acids: CCK Antagonists in Gastroenterology. Springer-Verlag: Berlin Heidelberg. 1991, pp. 152–158.Google Scholar
  40. 40.
    Kinami Y, Ashida Y, Gotoda H, Seto K, Kojima Y, Takashima S. Promoting effects of bile acid load on the occurrence of cholangiocarcinoma induced by diisopropanol-nitrosamine in hamsters. Oncology 1993 50:46–51.PubMedGoogle Scholar
  41. 41.
    Park J Y, Park BK, Ko JS, Bang S, Song SY, Chung JB. Bile acid analysis in biliary tract cancer. Yonsei Med J 2006 47:817–825.PubMedCrossRefGoogle Scholar
  42. 42.
    Caglieris S, Giannini E, Dardano G, Mondello L, Valente U, Testa R. Tauroursodeoxycholic acid administration as adjuvant therapy in cirrhotic patients on transplantation waiting lists. Hepatogastroenterology 2000 47:1045–1047.PubMedGoogle Scholar
  43. 43.
    Schoemaker MH, Gommans WM, Conde de la Rosa L, Homan M, Klok P, Trautwein C, van Goor H, Poelstra K, Haisma HJ, Jansen PL, Moshage H. Resistance of rat hepatocytes against bile acid-induced apoptosis in cholestatic liver injury is due to nuclear factor-kappa B activation. J Hepatol 2003 39:153–161.PubMedCrossRefGoogle Scholar
  44. 44.
    Schoemaker MH, Conde de la Rosa L, Buist-Homan M, Vrenken TE, Havinga R, Poelstra K, Haisma HJ, Jansen PL, Moshage H. Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology 2004 39:1563–1573.PubMedCrossRefGoogle Scholar
  45. 45.
    Tsukahara K, Kanai S, Ohta M, Kitani K. Taurine conjugate of ursodeoxycholate plays a major role in the hepatoprotective effect against cholestasis induced by taurochenodeoxycho-late in rats. Liver 1993 13:262–269.PubMedGoogle Scholar
  46. 46.
    Miyasaka K, Funakoshi A, Shikado F, Kitani K. Stimulatory and inhibitory effects of bile salts on rat pancreatic secretion. Gastroenterology 1992 102:598–604.PubMedGoogle Scholar
  47. 47.
    Poley JR. Fat digestion and absorption in lipase and bile acid deficiency. In: Rommel K, Goebell HD, eds. Lipid Absorption: Biochemical and Clinical Aspects. MTP Press: Lancaster. 1976, pp. 151–202.Google Scholar
  48. 48.
    Chu KM, Lo CM, Liu CL, Fan ST. Malignancy associated with hepatolithiasis. Hepatogastroenterology. 1997 44:352–357.PubMedGoogle Scholar
  49. 49.
    Ohshima H, Bandaleetova T Y, Brouet I, Bartsch H, Kirby G, Ogunbiyi F, Vatanasapt V, Pipitgool V. Increased nitrosamine and nitrate biosynthesis mediated by nitric oxide synthase induced in hamster infected with liver fluke (Opisthorchis viverrini). Carcinogenesis 1994 15:271–275.PubMedCrossRefGoogle Scholar
  50. 50.
    Zhou YM, Yin ZF, Yang JM, Li B, Shao WY, Xu F, Wang YL, Li DQ. Risk factors for intra-hepatic cholangiocarcinoma: a case-control study in China. World J Gastroenterol 2008 14:632–635.PubMedCrossRefGoogle Scholar
  51. 51.
    Ikematsu Y, Tomioka T, Kitajima T, Inoue K, Tajima Y, Kanematsu T. Tauroursodeoxycholate and cholestyramine enhance biliary carcinogenesis in hamsters. World J Surg. 2000 24:22–26.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Yoshito Ikematsu
    • 1
  • Tsutomu Tomioka
    • 2
  • Tsukasa Tsunoda
    • 3
  • Yoshitsugu Tajima
    • Takashi Kanematsu
      1. 1.Department of SurgeryHamamatsu Medical CenterHamamatsuJapan
      2. 2.Department of SurgeryNagasaki Yurino HospitalNishisonogiJapan
      3. 3.Department of SurgeryDivision of Gastroenterological Surgery, Kawasaki Medical SchoolKurashikiJapan

      Personalised recommendations