Advertisement

Biliary Carcinomas Induced in the Hamster

  • Yoshitsugu Tajima
  • Shizuo Yamanaka
  • Sumihiro Matsuzaki
  • Toshifumi Eto
  • Kazuya Okada
  • Hiroshi Shiku
  • Tsutomu Tomioka
  • Tsukasa Tsunoda
  • Takashi Kanematsu

Syrian hamsters were subjected to cholecystoduodenostomy with dissection of the common duct, and given N-nitrosobis(2-oxopropyl)amine (BOP). We then investigated the histomorphological characteristics of the adenomas and early carcinomas induced in the extrahepatic bile duct. The tumors that developed in the extrahepatic bile duct included 10 adenomas and 55 early carcinomas in 56 of the 156 hamsters killed. All the adenomas were polypoid in shape, whereas the early carcinomas, which were restricted to the mucosal layer of the bile duct, showed the following three different growth patterns: protruding in 41 (75%), 27 of which were polypoid and 14, papillary; superficial spreading in 9 (16%); and periductal glandular in 5 (9%). There were no depressed tumors. Carcinomas coexisting with or in adenoma were evident in 12 (22%) tumors, 11 of which were polypoid. Atypical papillary hyperplasia was seen within the tumor mass in 22 early carcinomas (40%) and was particularly prominent in papillary type tumors. These findings support the concept of an adenoma–carcinoma sequence in most polypoid tumors of the extrahepatic bile duct. Atypical papillary hyperplasia might also be premalignant, and these precursor lesions could reflect the growth patterns of tumors, at least in the early stage of tumorigenesis.

Keywords

Bile Duct Extrahepatic Bile Duct Intrahepatic Bile Duct Common Duct Bile Duct Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morson B. The polyp-cancer sequence in the large bowel. Proc. R. Soc. Med. 1974 67:451–457.PubMedGoogle Scholar
  2. 2.
    Muto T, Bussey HJ, Morson BC. The evolution of cancer of the colon and rectum. Cancer 1975 36:2251–2270.PubMedCrossRefGoogle Scholar
  3. 3.
    Kuramoto S, Oohara T. Minute cancers arising de novo in the human large intestine. Cancer 1988 61:829–834.PubMedCrossRefGoogle Scholar
  4. 4.
    Shimoda T, Ikegami M, Fujisaki J, Matsui T, Aizawa S, Ishikawa E. Early colorectal carcinoma with special reference to its development de novo. Cancer 1989 64:1138–1146.PubMedCrossRefGoogle Scholar
  5. 5.
    Kudo S. Endoscopic mucosal resection of flat and depressed types of early colorectal cancer. Endoscopy 1993 25:455–461.PubMedCrossRefGoogle Scholar
  6. 6.
    Tajima Y, Tomioka T, Ikematsu Y, Yamanaka S, Kuroki T, Kitajima T, Fukuda K, Tsuneoka N, Kitazato A, Adachi T, Kanematsu T. Experimental Study on Pathogenesis and Histomorphology of Early Carcinoma of the Extrahepatic Bile Duct in the Syrian Hamster. J Exp Clin Cancer Res 2005 24(3): 475–482.PubMedGoogle Scholar
  7. 7.
    Moore MA, Thamavit W, Bannasch P. Tumours of the liver. In Pathology of tumours in laboratory animals, eds. Turusov V.S and Mohr U, 2nd Ed., Vol. 3 – Tumours of the hamster. Lyon: International Agency for Research on Cancer 1996:79–108.Google Scholar
  8. 8.
    Turusov VS, Gorin B. Tumours of the gallbladder. In Pathology of tumours in laboratory animals, eds. Turusov VS and Mohr U, 2nd Ed., Vol. 3 – Tumours of the hamster. Lyon: International Agency for Research on Cancer 1996:109–126.Google Scholar
  9. 9.
    Wittekind C, Tannapfel A. Adenoma of the papilla and ampulla–premalignant lesions? Langenbecks Arch. Surg. 2001 386:172–175.PubMedCrossRefGoogle Scholar
  10. 10.
    Kaiser A, Jurowich C, Schonekas H, Gebhar dt C, Wunsch PH. The adenoma-carcinoma sequence applies to epithelial tumours of the papilla of Vater. Z. Gastroenterol. 2002 40:913–920.PubMedCrossRefGoogle Scholar
  11. 11.
    Scott-Coombes DM, Williamson RCN. Surgical treatment of primary duodenal carcinoma: a personal series. Br. J. Surg. 1994 81:1472–1474.PubMedCrossRefGoogle Scholar
  12. 12.
    Sato H, Mizushima M, Ito J, Doi K. Sessile adenoma of the gallbladder. Reappraisal of its importance as a precancerous lesions. Arch. Pathol. Lab. Med. 1985 109:65–69.PubMedGoogle Scholar
  13. 13.
    Nakajo S, Yamamoto M, Tahara E. Morphometrical analysis of gall-bladder adenoma and adenocarcinoma with reference to histogenesis and adenoma-carcinoma sequence. Virchows Arch. A Pathol. Anat. Histopathol. 1990 417:49–56.CrossRefGoogle Scholar
  14. 14.
    Callea F, Sergi C, Fabbretti G, Brisigotti M, Cozzutto C, Medicina D. Precancerous lesions of the biliary tree. J. Surg. Oncol. Suppl. 1993 (3):131–133.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee SS, Kim MH, Lee SK, Jang SJ, Song MH, Kim KP, Kim HJ, Seo DW, Song DE, Yu E, Lee SG, Min YI. Clinicopathologic review of 58 patients with biliary papillomatosis. Cancer 2004 100:783–793.PubMedCrossRefGoogle Scholar
  16. 16.
    Shimonishi T, Sasaki M, Nakanuma Y. Precancerous lesions of intrahepatic cholangiocarcinoma. J. Hepatobiliary Pancreat. Surg. 2000 7:542–550.PubMedCrossRefGoogle Scholar
  17. 17.
    Yamanaka S, Tomioka T, Tajima Y, Okada K, Shiku H, Kanematsu T. K-ras gene mutations in intrahepatic bile duct tumors of Syrian golden hamsters. J. Surg. Oncol. 1997 66:97–103.PubMedCrossRefGoogle Scholar
  18. 18.
    Majima T, Tsujiuchi T, Tsutsumi M, Tsunoda T, Konishi Y. Mutations of K-ras but not p53 genes in biliary duct and pancreatic duct carcinomas induced in hamsters by cholecystoduo-denostomy with dissection of the common duct followed by N-nitrosobis(2-oxopropyl) amine. Cancer Lett. 1997 118:47–53.PubMedCrossRefGoogle Scholar
  19. 19.
    Cern WL, Mangold KA, Scarpelli DG. K-ras mutation is an early event in pancreatic duct carcinogenesis in the Syrian golden hamster. Cancer Res. 1992 52:4507–4513.Google Scholar
  20. 20.
    Day JD, Digiuseppe JA, Yeo C, Lai-Goldman M, Anderson SM, Goodman SN, Kern SE, Hruban RH. Immunohistochemical evaluation of HER-2/neu expression in pancreatic adeno-carcinoma and pancreatic intraepithelial neoplasms. Hum. Pathol. 1996 27:119–124.PubMedCrossRefGoogle Scholar
  21. 21.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990 61:759–767.PubMedCrossRefGoogle Scholar
  22. 22.
    Kuroki T, Fujiwara Y, Tsuchiya E, Nakamori S, Imaoka S, Kanematsu T, Nakamura Y. Accumulation of genetic changes during development and progression of hepatocellular carcinoma: loss of heterozygosity on chromosome arm Ip occurs at an early stage of hepato-carcinogenesis. Genes, Chromosomes Cancer 1995 13:163–167.PubMedCrossRefGoogle Scholar
  23. 23.
    Tanno S, Obara T, Fujii T, Mizukami Y, Shudo R, Nishino N, Ura H, Klein-Szanto AJ, Kohgo Y. Proliferative potential and K-ras mutation in epithelial hyperplasia of the gallbladder in patients with anomalous pancreaticobiliary ductal union. Cancer 1998 83:267–275.PubMedCrossRefGoogle Scholar
  24. 24.
    Matsumoto Y, Fujii H, Itakura J, Matsuda M, Yang Y, Nobukawa B, Suda K. Pancreaticobiliary maljunction: pathophysiological and clinical aspects and the impact on biliary carcinogenesis. Langenbecks Arch. Surg. 2003 388:122–131.PubMedGoogle Scholar
  25. 25.
    Yao T, Kajiwara M, Kuroiwa S, Iwashita A, Oya M, Kabashima A, Tsuneyoshi M. Malignant transformation of gastric hyperplastic polyps: alteration of phenotypes, proliferative activity, and p53 expression. Hum. Pathol. 2002 33:1016–1022.PubMedCrossRefGoogle Scholar
  26. 26.
    Jass JR, Iino H, Ruszkiewicz A, Painter D, Solomon MJ, Koorey DJ, Cohn D, Furlong KL, Walsh MD, Palazzo J, Edmonston TB, Fishel R, Young J, Leggett BA. Neoplastic progression occurs through mutator pathways in hyperplastic polyposis of the colorectum. Gut 2000 47:43–49.PubMedCrossRefGoogle Scholar
  27. 27.
    Tsunoda T, Eto T, Koga M, Tomioka T, Motoshima K, Yamaguchi T, Izawa K, Tsuchiya R. Early carcinoma of the extrahepatic bile duct. Jpn. J. Surg. 1989 19:691–698.PubMedCrossRefGoogle Scholar
  28. 28.
    Kozuka S, Tsubone M, Hachisuka K. Evolution of carcinoma in the extrahepatic bile ducts. Cancer 1984 54:65–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Mizumoto R, Ogura Y, Kusuda T. Definition and diagnosis of early cancer of the biliary tract. Hepatogastroenterology 1993 12:163–170.Google Scholar
  30. 30.
    Yamamoto K. Intrahepatic periductal glands and their significances in primary intrahepatic lithiasis. Jpn. J. Surg. 1982 12:163–170.PubMedCrossRefGoogle Scholar
  31. 31.
    Terada T, Nakanuma Y, Ohta G. Glandular elements around the intrahepatic bile ducts in man; their morphology and distribution in normal livers. Liver 1987 7:1–8.PubMedGoogle Scholar
  32. 32.
    Terada T, Nakanuma Y. Pathological observations of intrahepatic peribiliary glands in 1,000 consecutive autopsy livers. II. A possible source of cholangiocarcinoma. Hepatology 1990 12:92–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Kumar R, Sukumar S, Barbacid M. Activation of ras oncogenes preceding the onset of neo-plasia. Science 1990 248:1101–1104.PubMedCrossRefGoogle Scholar
  34. 34.
    Scarpa A, Zamboni G, Achille A, Capelli P, Bogina G, Iacono C, Serio G, Accolla RS. ras-family gene mutations in neoplasia of the ampulla of Vater. Int. J. Cancer 1994 59:39–42.PubMedCrossRefGoogle Scholar
  35. 35.
    Nakanuma Y, Harada K, Ishikawa A, Zen Y, Sasaki M. Anatomic and molecular pathology of intrahepatic cholangiocarcinoma. J. Hepatobiliary Pancreat. Surg. 2003 10:265–281.PubMedCrossRefGoogle Scholar
  36. 36.
    Kuroki T, Tajima Y, Matsuo K, Kanematsu T. Genetic alterations in gallbladder carcinoma. Surg. Today 2005 35:101–105.PubMedCrossRefGoogle Scholar
  37. 37.
    Cowgill SM, Muscarella P. The genetics of pancreatic cancer. Am. J. Surg. 2003 186:279–286.PubMedCrossRefGoogle Scholar
  38. 38.
    Forrester K, Almoguera C, Han K, Grizzle WE, Perucho M. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 1987 327:298–303.PubMedCrossRefGoogle Scholar
  39. 39.
    Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL. Genetic alterations during colorectal-tumor development. N Engl. J. Med. 1988 319:525–532.PubMedGoogle Scholar
  40. 40.
    Levi S, Urbano-Ispizua A, Gill R, Thomas DM, Gilbertson J, Foster C, Marshall CJ. Multiple K-ras codon 12 mutations in cholangiocarcinomas demonstrated with a sensitive polymerase chain reaction technique. Cancer Res. 1991 51:3497–3502.PubMedGoogle Scholar
  41. 41.
    Tada M, Omata M, Ohto M. Analysis of ras gene mutations in human hepatic malignant tumors by polymerase chain reaction and direct sequencing. Cancer Res. 1990 50:1121–1124.PubMedGoogle Scholar
  42. 42.
    Tada M, Yokosuka O, Omata M, Ohto M, Isono K. Analysis of ras gene mutations in biliary and pancreatic tumors by polymerase chain reaction and direct sequencing. Cancer 1990 66:930–935.PubMedCrossRefGoogle Scholar
  43. 43.
    Motojima K, Tsunoda T, Kanematsu T, Nagata Y, Urano T, Shiku H. Distinguishing pancreatic carcinoma from other periampullary carcinomas by analysis of mutations in the Kirsten-ras oncogene. Ann. Surg. 1991 214:657–662.PubMedCrossRefGoogle Scholar
  44. 44.
    Tsuda H, Satarug S, Bhudhisawasdi V, Kihana T, Sugimura T, Hirohashi S. Cholangiocarcinomas in Japanese and Thai patients: difference in etiology and incidence of point mutation of the c-Ki-ras proto-oncogene. Mol. Carcinog. 1992 6:266–269.PubMedCrossRefGoogle Scholar
  45. 45.
    Tomioka T, Tajima Y, Ikematsu Y, Eto T, Tsunoda T, Kanematsu T. The early lesions and invasive patterns of the intrahepatic bile duct carcinoma – comparable study of the hamster and the human lesions. In the Thirty-sixth World Congress of Surgery meeting program, Aug 27–Sept 2, 1995, Lisbon, Portugal, 1995:156 (abst PP39).Google Scholar
  46. 46.
    Pour P, Althoff J, Kruger FW, Mohr U. A potent pancreatic carcinogen in Syrian golden hamsters: N-nitrosobis(2-oxopropyl)amine. J. Natl. Cancer Inst. 1977 58:1449–1453.PubMedGoogle Scholar
  47. 47.
    Konishi Y, Mizumoto K, Kitazawa S, Tsujiuchi T, Tsutsumi M, Kamano T. Early ductal lesions of pancreatic carcinogenesis in animals and humans. Int. J. Pancreatol. 1990 7:83–89.PubMedGoogle Scholar
  48. 48.
    Nakanuma Y, Yamaguchi K, Ohta G, Terada T. Pathologic features of hepatolithiasis in Japan. Hum. Pathol. 1988 19:1181–1186.PubMedCrossRefGoogle Scholar
  49. 49.
    Tsutsumi M, Murakami Y, Kondoh S, Tsujiuchi T, Hohnoki K, Horiguchi K, Noguchi O, Kobayashi E, Okita S, Sekiya T. Comparison of K-ras oncogene activation in pancreatic duct carcinomas and cholangiocarcinomas induced in hamsters by N-nitrosobis(2-hydroxypropyl) amine. Jpn. J. Cancer Res. 1993 84:956–960.PubMedGoogle Scholar
  50. 50.
    Cerny WL, Mangold KA, Scarpelli DG. Activation of K-ras in transplantable pancreatic ductal adenocarcinomas of Syrian golden hamsters. Carcinogenesis 1990 11:2075–2079.PubMedCrossRefGoogle Scholar
  51. 51.
    van Kranen HJ, Vermeulen E, Schoren L, Bax J, Woutersen RA, van Iersel P, van Kreijl CF, Scherer E. Activation of c-K-ras is frequent in pancreatic carcinomas of Syrian hamsters, but is absent in pancreatic tumors of rats. Carcinogenesis 1991 12:1477–1482.PubMedCrossRefGoogle Scholar
  52. 52.
    Ushijima T, Tsutsumi M, Sakai R, Ishizaka Y, Takaku F, Konishi Y, Takahashi M, Sugimura T, Nagao M. Ki-ras activation in pancreatic carcinomas of Syrian hamsters induced by N-nitrosobis(2-hydroxopropyl)amine. Jpn. J. Cancer Res. 1991 82:965–968.PubMedGoogle Scholar
  53. 53.
    Smit VT, Boot AJ, Smits AM, Fleuren GJ, Cornelisse CJ, Bos JL. KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res. 1988 16:7773–7782.PubMedCrossRefGoogle Scholar
  54. 54.
    Grünewald K, Lyons J, Fröhlich A, Feichtinger H, Weger RA, Schwab G, Janssen JW, Bartram CR. High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas. Int. J. Cancer 1989 43:1037–1041.PubMedCrossRefGoogle Scholar
  55. 55.
    Nagata Y, Abe M, Motoshima K, Nakayama E, Shiku H. Frequent glycine-to-aspartic acid mutations at codon 12 of c-Ki-ras gene in human pancreatic cancer in Japanese. Jpn. J. Cancer Res. 1990 81:135–140.PubMedGoogle Scholar
  56. 56.
    Tsutsumi M, Kondoh S, Noguchi O, Horiguchi K, Kobayashi E, Okita S, Ohashi K, Honoki K, Tsujiuchi T, Konishi Y. K-ras gene mutation in early ductal lesions induced in a rapid production model for pancreatic carcinomas in Syrian hamsters. Jpn. J. Cancer Res. 1993 84:1101–1105.PubMedGoogle Scholar
  57. 57.
    Berrozpe G, Schaeffer J, Peinado MA, Real FX, Perucho M. Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer. Int. J. Cancer 1994 58:185–191.PubMedCrossRefGoogle Scholar
  58. 58.
    Kinoshita H, Nagata E, Hirohashi K, Sakai K, Kobayashi Y. Carcinoma of the gallbladder with an anomalous connection between the choledocus and the pancreatic duct: report of 10 cases and review of the literature in Japan. Cancer 1984 54:762–769.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Yoshitsugu Tajima
    • Shizuo Yamanaka
      • 1
    • Sumihiro Matsuzaki
      • 2
    • Toshifumi Eto
      • 3
    • Kazuya Okada
      • 4
    • Hiroshi Shiku
      • 5
    • Tsutomu Tomioka
      • 6
    • Tsukasa Tsunoda
      • 7
    • Takashi Kanematsu
      1. 1.Department of SurgeryNarumidai Yamanaka ClinicNagasakiJapan
      2. 2.Department of SurgeryDialand Matsuzaki ClinicNagasakiJapan
      3. 3.Department of SurgeryEto HospitalIsahayaJapan
      4. 4.Department of SurgeryNagasaki Kouseikai HospitalNagasakiJapan
      5. 5.Department of Cancer Vaccine and Immuno-Gene TherapyMie University Graduate School of MedicineMieJapan
      6. 6.Department of SurgeryNagasaki Yurino HospitalNishisonogiJapan
      7. 7.Department of SurgeryDivision of Gastroenterological Surgery, Kawasaki Medical SchoolKurashikiJapan

      Personalised recommendations