Landscape Genomics: A Brief Perspective

  • Michael K. Schwartz
  • Kevin S. McKelvey
  • Samuel A. Cushman
  • Gordon Luikart


Landscape genetics is the amalgamation of population genetics and landscape ecology (see Manel et al. 2003; Storfer et al. 2007). In Chapter 17, we discuss landscape genetics and provide two examples of applications in the area of modeling population connectivity and inferring fragmentation. These examples, like virtually all extant landscape genetic analyses, were based on evaluating spatial genetic patterns using a relatively small number of selectively neutral (or nearly neutral) markers. Landscape genomics, on the other hand, is the simultaneous study of tens-to-hundreds of markers, ideally including markers in candidate adaptive genes (genes under selection), with georeferenced samples collected across a landscape. While landscape genomics is, in one sense, simply landscape genetics with lots of data (thus reduced variance and increased precision), the qualitatively different (adaptive, potentially non-independent) nature and analytical approaches associated with these data are different enough to produce a profoundly different field.


Trend Ecol Landscape Genetic Landscape Genomic Adaptive Gene Evolutionary Significant Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allendorf FW, Luikart G (2007) Conservation and the Genetics of Populations. Blackwell, OxfordGoogle Scholar
  2. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: A workbench to detect molecular adaptation based on an Fst-outlier method. BMC Bioinformatics 9:323CrossRefPubMedGoogle Scholar
  3. Balkenhol N, Gugerli F, Cushman S, Waits L, Coulon A, Arntzen J, Holderegger R, Wagner H (2007) Identifying future research needs in landscape genetics: where to from here? Landscape Ecology 24:455–463CrossRefGoogle Scholar
  4. Beaumont MA (2005) Adaptation and speciation: what can Fst tell us? Trends Ecol Evol 20:435–440CrossRefPubMedGoogle Scholar
  5. Bonin A, Taberlet P, Miaud C, Pompanon F (2006) Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol Biol Evol 23:773–783CrossRefPubMedGoogle Scholar
  6. Collins FS, Morgan M, Patrinos A (2003) The human genome project: Lessons from large-scale biology. Science 300:286–290CrossRefPubMedGoogle Scholar
  7. Crandall KA, Bininda-Evans ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295CrossRefPubMedGoogle Scholar
  8. Da Silva A, Gaillard J-M, Yoccoz NG, Hewison AJM, Galan M, Coulson T, Allainé D, Vial L, Delorme D, Van Laere G, Klein F, Luikart G (2009) Heterozygosity-fitness correlations revealed by neutral and candidate gene markers in roe deer from a long-term study. Evolution 63:403–417CrossRefPubMedGoogle Scholar
  9. Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354–357CrossRefPubMedGoogle Scholar
  10. Eid J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138CrossRefPubMedGoogle Scholar
  11. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:1–17CrossRefGoogle Scholar
  12. Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752PubMedGoogle Scholar
  13. Garroway CJ, Bowman J, Carr D, Wilson PJ (2008) Applications of graph theory to landscape genetics. Evol Appl 1:620–630Google Scholar
  14. Gonzalez-Martinez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of tag singlenucleotide polymorphisms at candidate genes for droughtstress response in Pinus taeda L. Genetics 72:1915–1926Google Scholar
  15. Hauser L, Seeb JE (2008) Advances in molecular technology and their impact on fisheries genetics. Fish and Fisheries 9:473–486CrossRefGoogle Scholar
  16. Hodges E et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39:1522–1527CrossRefPubMedGoogle Scholar
  17. Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207CrossRefGoogle Scholar
  18. Joost S, Bonin A, Bruford MW, Despres L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969CrossRefPubMedGoogle Scholar
  19. Kim S, Misra A (2007) SNP genotyping: Technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320CrossRefPubMedGoogle Scholar
  20. Kohn MH, Murphy WJ, Ostrander EA, Wayne RK (2006) Genomics and conservation genetics. Trends Ecol Evol 21:629–637CrossRefPubMedGoogle Scholar
  21. Lawson Handley LJ, Manica A, Goudet J, Balloux F (2007) Going the distance: human population genetics in a clinal world. Trends Genet 23:432–439CrossRefGoogle Scholar
  22. Long R, MacKay P, Ray J, Zielinski W (2008) Noninvasive survey methods for carnivores. Island Press, Washington, DCGoogle Scholar
  23. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nature Reviews Genetics 4:981–994CrossRefPubMedGoogle Scholar
  24. Luikart G, Pilgrim K, Visty J, Ezenwa VO, Schwartz MK (2008) Candidate gene microsatellite variation is associated with parasitism in wild bighorn sheep. Biol Lett 4:228–231CrossRefPubMedGoogle Scholar
  25. Manel S, Schwartz M, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  26. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141PubMedGoogle Scholar
  27. Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nature Protocols 3:267–277CrossRefPubMedGoogle Scholar
  28. Morin PA, McCarthy M (2007) Highly accurate SNP genotyping from historical and low-quality samples. Mol Ecol Notes 7:937–946CrossRefGoogle Scholar
  29. Morin PA, Luikart G, Wayne RK SNP-workshop group (2004) Applications of singleGoogle Scholar
  30. Moritz C (1994) Defining ‘evolutionary significant units’ for conservation. Trends Ecol Evol 9:373–375CrossRefGoogle Scholar
  31. Palsboll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16CrossRefPubMedGoogle Scholar
  32. Pearman PB (2001) Conservation value of independently evolving units: sacred cow or testable hypothesis? Conserv Biol 15:780–783CrossRefGoogle Scholar
  33. Perkel J (2008) SNP genotyping: six technologies that keyed a revolution. Nat Meth 5:447–453CrossRefGoogle Scholar
  34. Porreca GJ, Zhang K, Li J, et al (2007) Multiplex amplification of large sets of human exons. Nat Meth 4:931–936CrossRefGoogle Scholar
  35. Prugnolle F, Manica A, Balloux F (2005a) Geography predicts neutral genetic diversity of human populations. Curr Biol 15:R159–R160CrossRefGoogle Scholar
  36. Prugnolle F, Manica A, Charpentier M, Guegan JF, Guernier V, Balloux F (2005b) Pathogen driven selection and worldwide HLA Class I diversity. Curr Biol 15:1022–1027CrossRefGoogle Scholar
  37. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145CrossRefPubMedGoogle Scholar
  38. Smith TB, Wayne RK, Girman DJ, Bruford MW (1997) A role for ecotones in generating rainforest biodiversity. Science 276:1855–1857CrossRefGoogle Scholar
  39. Storfer A et al (2007) Putting the “landscape” in landscape genetics. Heredity 98:128–142CrossRefPubMedGoogle Scholar
  40. Storz JF, Nachman MW (2003) Natural selection on protein polymorphism in the rodent genus Peromyscus: evidence from interlocus contrasts. Evolution 57:2628–2635PubMedGoogle Scholar
  41. Thurston MI, Field D (2005) Msatfinder: detection and characterisation of microsatellites. Distributed by the authors at CEH Oxford, Mansfield Road, Oxford OX1 3SR
  42. van Tienderen P, de Haan A, van der Linden C, Vosman B (2002) Biodiversity assessment using markers for ecologically important traits. Trends Ecol Evol 17:577–582CrossRefGoogle Scholar
  43. Vasemägi A, Primmer CR (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Invited Review in Mol Ecol 14:3623–3642CrossRefGoogle Scholar
  44. Vasemägi A, Nilsson J, Primmer CR (2005) Expressed sequence tag (EST) linked microsatellites as a source of gene associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol 22:1067–1076CrossRefPubMedGoogle Scholar
  45. Vera JC et al (2008) Rapid transcriptome characterization for a non-model organism using 454 pyrosequencing. Mol Ecol 17:1636–1647CrossRefPubMedGoogle Scholar
  46. Waples RS (1995) Evolutionarily significant units and the conservation of biological diversity under the Endangered Species Act. In: Nielsen JL, Powers DA (eds) Evolution and the aquatic ecosystem: defining unique units in population conservation. American Fisheries Society Symposium No. 17. Bethesda, MDGoogle Scholar
  47. Wilding CS, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J Evol Biol 14:611–619CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Michael K. Schwartz
    • Kevin S. McKelvey
      • Samuel A. Cushman
        • Gordon Luikart
          • 1
          • 2
        1. 1.Division of Biological SciencesUniversity of MontanaMissoulaUSA
        2. 2.Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-UP)Universidade do Porto (CIBIO-UP)Portugal

        Personalised recommendations