Skip to main content

Abstract

Landscape genetics is the amalgamation of population genetics and landscape ecology (see Manel et al. 2003; Storfer et al. 2007). In Chapter 17, we discuss landscape genetics and provide two examples of applications in the area of modeling population connectivity and inferring fragmentation. These examples, like virtually all extant landscape genetic analyses, were based on evaluating spatial genetic patterns using a relatively small number of selectively neutral (or nearly neutral) markers. Landscape genomics, on the other hand, is the simultaneous study of tens-to-hundreds of markers, ideally including markers in candidate adaptive genes (genes under selection), with georeferenced samples collected across a landscape. While landscape genomics is, in one sense, simply landscape genetics with lots of data (thus reduced variance and increased precision), the qualitatively different (adaptive, potentially non-independent) nature and analytical approaches associated with these data are different enough to produce a profoundly different field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allendorf FW, Luikart G (2007) Conservation and the Genetics of Populations. Blackwell, Oxford

    Google Scholar 

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: A workbench to detect molecular adaptation based on an Fst-outlier method. BMC Bioinformatics 9:323

    Article  PubMed  Google Scholar 

  • Balkenhol N, Gugerli F, Cushman S, Waits L, Coulon A, Arntzen J, Holderegger R, Wagner H (2007) Identifying future research needs in landscape genetics: where to from here? Landscape Ecology 24:455–463

    Article  Google Scholar 

  • Beaumont MA (2005) Adaptation and speciation: what can Fst tell us? Trends Ecol Evol 20:435–440

    Article  PubMed  Google Scholar 

  • Bonin A, Taberlet P, Miaud C, Pompanon F (2006) Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol Biol Evol 23:773–783

    Article  CAS  PubMed  Google Scholar 

  • Collins FS, Morgan M, Patrinos A (2003) The human genome project: Lessons from large-scale biology. Science 300:286–290

    Article  CAS  PubMed  Google Scholar 

  • Crandall KA, Bininda-Evans ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    Article  PubMed  Google Scholar 

  • Da Silva A, Gaillard J-M, Yoccoz NG, Hewison AJM, Galan M, Coulson T, Allainé D, Vial L, Delorme D, Van Laere G, Klein F, Luikart G (2009) Heterozygosity-fitness correlations revealed by neutral and candidate gene markers in roe deer from a long-term study. Evolution 63:403–417

    Article  PubMed  Google Scholar 

  • Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354–357

    Article  CAS  PubMed  Google Scholar 

  • Eid J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  PubMed  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:1–17

    Article  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    CAS  PubMed  Google Scholar 

  • Garroway CJ, Bowman J, Carr D, Wilson PJ (2008) Applications of graph theory to landscape genetics. Evol Appl 1:620–630

    Google Scholar 

  • Gonzalez-Martinez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of tag singlenucleotide polymorphisms at candidate genes for droughtstress response in Pinus taeda L. Genetics 72:1915–1926

    Google Scholar 

  • Hauser L, Seeb JE (2008) Advances in molecular technology and their impact on fisheries genetics. Fish and Fisheries 9:473–486

    Article  Google Scholar 

  • Hodges E et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39:1522–1527

    Article  CAS  PubMed  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Joost S, Bonin A, Bruford MW, Despres L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Misra A (2007) SNP genotyping: Technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320

    Article  CAS  PubMed  Google Scholar 

  • Kohn MH, Murphy WJ, Ostrander EA, Wayne RK (2006) Genomics and conservation genetics. Trends Ecol Evol 21:629–637

    Article  PubMed  Google Scholar 

  • Lawson Handley LJ, Manica A, Goudet J, Balloux F (2007) Going the distance: human population genetics in a clinal world. Trends Genet 23:432–439

    Article  Google Scholar 

  • Long R, MacKay P, Ray J, Zielinski W (2008) Noninvasive survey methods for carnivores. Island Press, Washington, DC

    Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nature Reviews Genetics 4:981–994

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, Pilgrim K, Visty J, Ezenwa VO, Schwartz MK (2008) Candidate gene microsatellite variation is associated with parasitism in wild bighorn sheep. Biol Lett 4:228–231

    Article  PubMed  Google Scholar 

  • Manel S, Schwartz M, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    CAS  PubMed  Google Scholar 

  • Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nature Protocols 3:267–277

    Article  CAS  PubMed  Google Scholar 

  • Morin PA, McCarthy M (2007) Highly accurate SNP genotyping from historical and low-quality samples. Mol Ecol Notes 7:937–946

    Article  CAS  Google Scholar 

  • Morin PA, Luikart G, Wayne RK SNP-workshop group (2004) Applications of single

    Google Scholar 

  • Moritz C (1994) Defining ‘evolutionary significant units’ for conservation. Trends Ecol Evol 9:373–375

    Article  Google Scholar 

  • Palsboll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    Article  PubMed  Google Scholar 

  • Pearman PB (2001) Conservation value of independently evolving units: sacred cow or testable hypothesis? Conserv Biol 15:780–783

    Article  Google Scholar 

  • Perkel J (2008) SNP genotyping: six technologies that keyed a revolution. Nat Meth 5:447–453

    Article  CAS  Google Scholar 

  • Porreca GJ, Zhang K, Li J, et al (2007) Multiplex amplification of large sets of human exons. Nat Meth 4:931–936

    Article  CAS  Google Scholar 

  • Prugnolle F, Manica A, Balloux F (2005a) Geography predicts neutral genetic diversity of human populations. Curr Biol 15:R159–R160

    Article  CAS  Google Scholar 

  • Prugnolle F, Manica A, Charpentier M, Guegan JF, Guernier V, Balloux F (2005b) Pathogen driven selection and worldwide HLA Class I diversity. Curr Biol 15:1022–1027

    Article  CAS  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Smith TB, Wayne RK, Girman DJ, Bruford MW (1997) A role for ecotones in generating rainforest biodiversity. Science 276:1855–1857

    Article  CAS  Google Scholar 

  • Storfer A et al (2007) Putting the “landscape” in landscape genetics. Heredity 98:128–142

    Article  CAS  PubMed  Google Scholar 

  • Storz JF, Nachman MW (2003) Natural selection on protein polymorphism in the rodent genus Peromyscus: evidence from interlocus contrasts. Evolution 57:2628–2635

    CAS  PubMed  Google Scholar 

  • Thurston MI, Field D (2005) Msatfinder: detection and characterisation of microsatellites. Distributed by the authors at http://www.genomics.ceh.ac.uk/msatfinder/. CEH Oxford, Mansfield Road, Oxford OX1 3SR

  • van Tienderen P, de Haan A, van der Linden C, Vosman B (2002) Biodiversity assessment using markers for ecologically important traits. Trends Ecol Evol 17:577–582

    Article  Google Scholar 

  • Vasemägi A, Primmer CR (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Invited Review in Mol Ecol 14:3623–3642

    Article  Google Scholar 

  • Vasemägi A, Nilsson J, Primmer CR (2005) Expressed sequence tag (EST) linked microsatellites as a source of gene associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol 22:1067–1076

    Article  PubMed  Google Scholar 

  • Vera JC et al (2008) Rapid transcriptome characterization for a non-model organism using 454 pyrosequencing. Mol Ecol 17:1636–1647

    Article  CAS  PubMed  Google Scholar 

  • Waples RS (1995) Evolutionarily significant units and the conservation of biological diversity under the Endangered Species Act. In: Nielsen JL, Powers DA (eds) Evolution and the aquatic ecosystem: defining unique units in population conservation. American Fisheries Society Symposium No. 17. Bethesda, MD

    Google Scholar 

  • Wilding CS, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J Evol Biol 14:611–619

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Schwartz, M.K., McKelvey, K.S., Cushman, S.A., Luikart, G. (2010). Landscape Genomics: A Brief Perspective. In: Cushman, S.A., Huettmann, F. (eds) Spatial Complexity, Informatics, and Wildlife Conservation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-87771-4_9

Download citation

Publish with us

Policies and ethics