Advertisement

Using Geographical Mapping and Occupancy Modeling to Study the Distribution of the Critically Endangered Leopard (Panthera pardus) Population in Armenia

  • Igor G. Khorozyan
  • Alexander G. Malkhasyan
  • Shushanik G. Asmaryan
  • Alexei V. Abramov

Abstract

Space limitations arising from human activities affect demographic structure and performance of mammalian populations and thus reduce their viability. This is especially true for wide-ranging wild cats (family Felidae) which generally lead solitary lives and require large tracts of good-quality habitats for survival (Sunquist and Sunquist 2001). As human activities leave more and more mosaics of modified lands behind, felid populations become fragmented and further impaired by the small and often unviable size of patches necessitating more complicated dispersal of individuals between patches (Reed 2004).

Keywords

Detection Probability Alpine Meadow Geographical Mapping Occupancy Modeling Conserv Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aivazyan HM (2006) Nature of Armenia. Series “Family Encyclopedia”, book 3. Haikakan Hanragitaran, YerevanGoogle Scholar
  2. Allen CR, Pearlstine LG, Kitchens WM (2001) Modeling viable mammal populations in gap analyses. Biol Conserv 99:135–144CrossRefGoogle Scholar
  3. Beier P (1993) Determining minimum habitat areas and habitat corridors for cougars. Conserv Biol 7:94–108CrossRefGoogle Scholar
  4. Cardillo M, Purvis A, Sechrest W, Gittleman JL, Bielby J, Mace GM (2004) Human population density and extinction risk in the world's carnivores. PLoS Biol 2:909–914CrossRefGoogle Scholar
  5. Clevenger AP, Wierzchowski J, Chruszcz B, Gunson K (2002) GIS-generated, expert-based models for identifying wildlife habitat linkages and planning mitigation passages. Conserv Biol 16:503–514CrossRefGoogle Scholar
  6. Crooks KR (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv Biol 16:488–502CrossRefGoogle Scholar
  7. Edwards TC, Deshler E, Foster D, Moisen GG (1996) Adequacy of wildlife habitat relation models for estimating spatial distributions of terrestrial vertebrates. Conserv Biol 10:263–270CrossRefGoogle Scholar
  8. Ferreras P (2001) Landscape structure and asymmetrical inter-patch connectivity in a metapopulation of the endangered Iberian lynx. Biol Conserv 100:125–136CrossRefGoogle Scholar
  9. Gavashelishvili A, Lukarevskiy V (2008) Modelling the habitat requirements of leopard Panthera pardus in west and central Asia. J Appl Ecol 45:579–588CrossRefGoogle Scholar
  10. Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biol Conserv 116:195–203Google Scholar
  11. Haines AM, Tewes ME, Laack LL, Horne JS, Young JH (2006) A habitat-based population viability analysis for ocelots (Leopardus pardalis) in the United States. Biol Conserv 132:424–436CrossRefGoogle Scholar
  12. IUCN (2003) Guidelines for application of IUCN Red List criteria at regional levels: version 3.0. IUCN Species Survival Commission, Gland and Cambridge. www.iucnredlist.org Accessed 20 February 2008Google Scholar
  13. IUCN (2007) The 2007 IUCN Red List of Threatened Species. www.iucnredlist.org Accessed 20 February 2008Google Scholar
  14. Jacobs J (1974) Quantitative measurement of food selection — a modification of the forage ratio and Ivlev's electivity index. Oecologia 14:413–417CrossRefGoogle Scholar
  15. Kendall KC, Metzgar LH, Patterson DA, Steele BM (1992) Power of sign surveys to monitor population trends. Ecol Appl 2:422–430CrossRefGoogle Scholar
  16. Khorozyan I (2003) Habitat preferences by the endangered Persian leopard (Panthera pardus saxicolor Pocock, 1927) in Armenia. Zool Middle East 30:25–36Google Scholar
  17. Khorozyan IG, Abramov AV (2005) The spatial structure and conservation of the Persian leopard population in Armenia. In: Rozhnov VV, Tembotova FA (eds) Mlekopitayuschie gornykh territorii. KMK Scientific, MoscowGoogle Scholar
  18. Khorozyan IG, Cazon A, Malkhasyan AG, Abramov AV (2007) Using thin-layer chromatography of fecal bile acids to study the leopard (Panthera pardus ciscaucasica) population. Biol Bull 34:361–366CrossRefGoogle Scholar
  19. Khorozyan IG, Malkhasyan AG, Abramov AV (2008) Presence-absence surveys of prey and their use in predicting leopard (Panthera pardus) densities: a case study from Armenia. Integr Zool 3:322–332CrossRefGoogle Scholar
  20. Khorozyan I, Malkhasyan A, Asmaryan S (2005) The Persian leopard prowls its way to survival. Endang Spec Update 22:51–60Google Scholar
  21. Kiabi BH, Dareshouri BF, Ghaemi RA, Jahanshahi M (2002) Population status of the Persian leopard (Panthera pardus saxicolor Pocock, 1927) in Iran. Zool Middle East 26:41–47Google Scholar
  22. MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic, Boston, MAGoogle Scholar
  23. MacKenzie DI, Royle JA (2005) Designing occupancy studies: general advice and allocating survey effort. J Appl Ecol 42:1105–1114CrossRefGoogle Scholar
  24. Moilanen A (2002) Implications of empirical data quality to metapopulation model parameter estimation and application. Oikos 96:516–530CrossRefGoogle Scholar
  25. Peterson AT (2001) Endangered species and peripheral populations: cause for reflection. Endang Spec Update 18:30–31Google Scholar
  26. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeGoogle Scholar
  27. Reed DH (2004) Extinction risk in fragmented habitats. Anim Conserv 7:181–191CrossRefGoogle Scholar
  28. Reed JM (1996) Using statistical probability to increase confidence of inferring species extinction. Conserv Biol 10:1283–1285CrossRefGoogle Scholar
  29. Sanderson EW, Redford KH, Chetkiewicz CLB, Medellin RA, Rabinowitz AR, Robinson JG, Taber AB (2002) Planning to save a species: the jaguar as a model. Conserv Biol 16:58–72CrossRefGoogle Scholar
  30. Smallwood KS (1999) Scale domains of abundance amongst species of mammalian Carnivora. Env Conserv 26:102–111CrossRefGoogle Scholar
  31. Stander PE (1998) Spoor counts as indices of large carnivore populations: the relationship between spoor frequency, sampling effort and true density. J Appl Ecol 35:378–385CrossRefGoogle Scholar
  32. Stander PE, Haden PJ, Kaqece, Ghau (1997) The ecology of asociality in Namibian leopards. J Zool 242:343–364Google Scholar
  33. Stauffer HB, Ralph CJ, Miller SL (2002) Incorporating detection uncertainty into presence— absence surveys for marbled murrelet. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island, Washington, DCGoogle Scholar
  34. Stith BM, Kumar NS (2002) Spatial distributions of tigers and prey: mapping and the use of GIS. In: Karanth KU, Nichols JD (eds) Monitoring tigers and their prey. Centre of Wildlife Studies, BangaloreGoogle Scholar
  35. Sunquist ME, Sunquist F (2001) Changing landscapes: consequences for carnivores. In: Gittleman JL, Funk SM, MacDonald D, Wayne RK (eds) Carnivore conservation. Cambridge University Press, CambridgeGoogle Scholar
  36. Tigas LA, Van Vuren DH, Sauvajot RM (2002) Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biol Conserv 108:299–306CrossRefGoogle Scholar
  37. Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Parris K, Possingham HP (2003) Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecol Appl 13:1790–1801CrossRefGoogle Scholar
  38. Van Sickle WD, Lindzey FG (1991) Evaluation of a cougar population estimator based on probability sampling. J Wildl Manag 55:738–743CrossRefGoogle Scholar
  39. Weber W, Rabinowitz A (1996) A global perspective on large carnivore conservation. Conserv Biol 10:1046–1054CrossRefGoogle Scholar
  40. Wilson GJ, Delahay RJ (2001) A review of methods to estimate the abundance of terrestrial carnivores using field signs and observation. Wildl Res 28:151–164CrossRefGoogle Scholar
  41. Wintle BA, Kavanagh RP, McCarthy MA, Burgman MA (2005) Estimating and dealing with detecta-bility in occupancy surveys for forest owls and arboreal marsupials. J Wildl Manag 69:905–917CrossRefGoogle Scholar
  42. Woodroffe R (2001) Strategies for carnivore conservation: lessons from contemporary extinctions. In: Gittleman JL, Funk SM, MacDonald D, Wayne RK (eds) Carnivore conservation. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Igor G. Khorozyan
    • 1
    • 2
  • Alexander G. Malkhasyan
    • 2
  • Shushanik G. Asmaryan
    • 3
  • Alexei V. Abramov
    • 4
  1. 1.Zoological Institute, Russian Academy of SciencesRussia
  2. 2.WWF ArmeniaYerevanArmenia
  3. 3.Centre for Ecological StudiesNational Academy of SciencesYerevanArmenia
  4. 4.Zoological Institute, Russian Academy of SciencesRussia

Personalised recommendations