Skip to main content

Systems Biology of Mammalian Circadian Clocks

  • Conference paper
Systems Biology
  • 1461 Accesses

Recent large-scale efforts in genome sequencing, expression profiling, and functional screening have produced an embarrassment of riches for life sciences researchers, and biological data can now be accessed in quantities that are orders of magnitude greater than were available even a few years ago. The growing need for interpretation of data sets, as well as the accelerating demand for their integration to a higher-level understanding of life, has set the stage for the advent of systems biology [1,2], in which biological processes and phenomena are approached as complex and dynamic systems. Systems biology is a natural extension of molecular biology and can be defined as “biology after identification of key gene(s).” We see systems biological research as a multistage process, beginning with the comprehensive identification and quantitative analysis of individual system components and their networked interactions, and leading to the ability to control existing systems toward the desired state and design new ones based on an understanding of structure and underlying dynamical principles (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  PubMed  CAS  Google Scholar 

  2. Kitano H (2002) Computational systems biology. Nature (Lond) 420:206–210

    Article  CAS  Google Scholar 

  3. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature (Lond) 418:935–941

    Article  CAS  Google Scholar 

  4. Dunlap JC, Loros JJ, DeCoursey PJ (eds) (2004) Chronobiology: Biological Timekeeping. Sinauer Associates, Sunderland, MA

    Google Scholar 

  5. Panda S, Hogenesch JB, Kay SA (2002) Circadian rhythms from flies to human. Nature (Lond) 417:329–335

    Article  CAS  Google Scholar 

  6. King DP, Zhao Y, Sangoram AM et al (1997) Positional cloning of the mouse circadian clock gene. Cell 89:641–653

    Article  PubMed  CAS  Google Scholar 

  7. Bunger MK, Wilsbacher LD, Moran SM et al (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017

    Article  PubMed  CAS  Google Scholar 

  8. Bae K, Jin X, Maywood ES et al (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30:525–536

    Article  PubMed  CAS  Google Scholar 

  9. Zheng B, Albrecht U, Kaasik K et al (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105:683–694

    Article  PubMed  CAS  Google Scholar 

  10. van der Horst GT, Muijtjens M, Kobayashi K et al (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature (Lond) 398:627–630

    Article  Google Scholar 

  11. Vitaterna MH, Selby CP, Todo T et al (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA 96:12114–12119

    Article  PubMed  CAS  Google Scholar 

  12. Lowrey PL, Shimomura K, Antoch MP et al (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483–492

    Article  PubMed  CAS  Google Scholar 

  13. Sato TK, Panda S, Miraglia LJ et al (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537

    Article  PubMed  CAS  Google Scholar 

  14. Preitner N, Damiola F, Lopez-Molina L et al (2002) The orphan nuclear receptor REV-ERB-alpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  PubMed  CAS  Google Scholar 

  15. Wuarin J, Schibler U (1990) Expression of the liver-enriched transcriptional activator protein DBP follows a stringent circadian rhythm. Cell 63:1257–1266

    Article  PubMed  CAS  Google Scholar 

  16. Mitsui S, Yamaguchi S, Matsuo T et al (2001) Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 15:995–1006

    Article  PubMed  CAS  Google Scholar 

  17. Honma S, Kawamoto T, Takagi Y et al (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature (Lond) 419:841–844

    Article  CAS  Google Scholar 

  18. Zylka MJ, Shearman LP, Weaver DR et al (1998) Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20:1103–1110

    Article  PubMed  CAS  Google Scholar 

  19. Reick M, Garcia JA, Dudley C et al (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293:506–509

    Article  PubMed  CAS  Google Scholar 

  20. Ueda HR, Chen W, Adachi A et al (2002) A transcription factor response element for gene expression during circadian night. Nature (Lond) 418:534–539

    Article  CAS  Google Scholar 

  21. Ueda HR, Hayashi S, Chen W et al (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37:187–192

    Article  PubMed  CAS  Google Scholar 

  22. Yamazaki S, Numano R, Abe M et al (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  PubMed  CAS  Google Scholar 

  23. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937

    Article  PubMed  CAS  Google Scholar 

  24. Yagita K, Tamanini F, van Der Horst GT et al (2001) Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292:278–281

    Article  PubMed  CAS  Google Scholar 

  25. Akashi M, Nishida E (2000) Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Dev 14:645–649

    PubMed  CAS  Google Scholar 

  26. Gekakis N, Staknis D, Nguyen HB et al (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569.

    Article  PubMed  CAS  Google Scholar 

  27. Kume K, Zylka MJ, Sriram S et al (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205.

    Article  PubMed  CAS  Google Scholar 

  28. Shearman LP, Sriram S, Weaver DR et al (2000) Interacting molecular loops in the mammalian circadian clock. Science 288:1013–1019

    Article  PubMed  CAS  Google Scholar 

  29. Lipshutz RJ, Fodor SP, Gingeras TR et al (1999) High density synthetic oligonucleotide arrays. Nat Genet 21:20–24

    Article  PubMed  CAS  Google Scholar 

  30. Suzuki Y, Taira H, Tsunoda T et al (2001) Diverse transcriptional initiation revealed by fine, large-scale mapping of mRNA start sites. EMBO Rep 2:388–393

    PubMed  CAS  Google Scholar 

  31. Hogenesch JB, Gu YZ, Jain S et al (1998) The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA 95:5474–5479

    Article  PubMed  CAS  Google Scholar 

  32. Yoo SH, Ko CH, Lowrey PL et al (2005) A noncanonical E-box enhancer drives mouse Period 2 circadian oscillations in vivo. Proc Natl Acad Sci USA 102:2608–2613

    Article  PubMed  CAS  Google Scholar 

  33. Falvey E, Marcacci L, Schibler U (1996) DNA-binding specificity of PAR and C/EBP leucine zipper proteins: a single amino acid substitution in the C/EBP DNA-binding domain confers PAR-like specificity to C/EBP. Biol Chem 377:797–809

    PubMed  CAS  Google Scholar 

  34. Harding HP, Lazar MA (1993) The orphan receptor Rev-ErbA alpha activates transcription via a novel response element. Mol Cell Biol 13:3113–3121

    PubMed  CAS  Google Scholar 

  35. Ukai-Tadenuma M, Kasukawa T, Ueda HR (2008) Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat Cell Biol 10:1154–1163

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this paper

Cite this paper

Ueda, H.R. (2009). Systems Biology of Mammalian Circadian Clocks. In: Nakanishi, S., Kageyama, R., Watanabe, D. (eds) Systems Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-87704-2_6

Download citation

Publish with us

Policies and ethics