Advertisement

How Animals Get Their Skin Patterns: Fish Pigment Pattern as a Live Turing Wave

  • Shigeru Kondo

There are several theoretical mechanisms that are able to generate spatial patterns autonomously without any pre-pattern.1,2 Among them, the most plausible in the biological system is the reaction-diffusion (RD) mechanism, which was first presented by A. Turing in 19523,4 and mathematically refined by mathematical biologists.5,6 In the model, the spatial pattern is made as stationary waves generated by the interactive RD of putative chemical substances. According to the mathematical study using computer simulation, an RD system is able to generate stable and evenly spaced patterns when the whole network satisfies a condition: “local activation and long-range inhibition.”6 The spatial patterns made by the system (e.g., “RD pattern” or “Turing pattern”) do not need any pre-pattern and autonomously regenerates when artificially disturbed.

However, in spite of its theoretical importance, until very recently Turing's theory was not widely accepted by experimental biologists, for two major reasons. The first is that the main concept of the theory, “the pattern is made by wave,” is quite unfamiliar to many experimental biologists. The second is the difficulty of showing the existence of “wave.” To prove that the RD mechanism functions in a morphogenetic event, we need to show that the pattern possesses the dynamic nature of the RD wave.

Keywords

Retinal Pigment Epithelium Pigment Cell Turing Pattern Rectify Potassium Channel Pigment Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murray, J. D. & Oster, G. F. Generation of biological pattern and form. IMA J Math Appl Med Biol 1:51–75 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    Meinhardt, H. Models of Biological Pattern Formation. Academic Press, London (1982).Google Scholar
  3. 3.
    Turing, A. The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–72 (1952).CrossRefGoogle Scholar
  4. 4.
    Gierer, A. & Meinhardt, H. A theory of biological pattern formation. Kybernetik 12:30–39 (1972).PubMedCrossRefGoogle Scholar
  5. 5.
    Murray, J. Mathematical Biology. Springer, Berlin (2003).Google Scholar
  6. 6.
    Meinhardt, H. & Gierer, A. Pattern formation by local self-activation and lateral inhibition. Bioessays 22:753–760 (2000).PubMedCrossRefGoogle Scholar
  7. 7.
    Castets, V., Dulos, E., Boissonade, J. & De Kepper, P. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys Rev Lett 64:2953–2956 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    Ouyang, Q. & Swinney, H. Transition from a uniform state to hexagonal and striped Turing patterns. Nature (Lond) 352:610–612 (1991).CrossRefGoogle Scholar
  9. 9.
    Kondo, S. & Asai, R. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature (Lond) 376:765–768 (1995).CrossRefGoogle Scholar
  10. 10.
    Nagorcka, B. N. Evidence for a reaction-diffusion system as a mechanism controlling mammalian hair growth. Biosystems 16:323–332 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    Jung, H. S. et al. Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Dev Biol 196:11–23 (1998).PubMedCrossRefGoogle Scholar
  12. 12.
    Sick, S., Reinker, S., Timmer, J. & Schlake, T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314:1447–1450 (2006).PubMedCrossRefGoogle Scholar
  13. 13.
    Harris, M. P., Williamson, S., Fallon, J. F., Meinhardt, H. & Prum, R. O. Molecular evidence for an activator-inhibitor mechanism in development of embryonic feather branching. Proc Natl Acad Sci USA 102:11734–11739 (2005).PubMedCrossRefGoogle Scholar
  14. 14.
    Prum, R. O. & Williamson, S. Reaction-diffusion models of within-feather pigmentation patterning. Proc Biol Sci 269:781–792 (2002).PubMedCrossRefGoogle Scholar
  15. 15.
    Jiang, T. X. et al. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models. Int J Dev Biol 48:117–135 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    Gierer, A. et al. Regeneration of hydra from reaggregated cells. Nat New Biol 239:98–101 (1972).PubMedCrossRefGoogle Scholar
  17. 17.
    Bode, H. R. Head regeneration in Hydra. Dev Dyn 226:225–236 (2003).PubMedCrossRefGoogle Scholar
  18. 18.
    Technau, U. et al. Parameters of self-organization in Hydra aggregates. Proc Natl Acad Sci USA 97:12127–12131 (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    Nakamura, T. et al. Generation of robust left-right asymmetry in the mouse embryo requires a self-enhancement and lateral-inhibition system. Dev Cell 11:495–504 (2006).PubMedCrossRefGoogle Scholar
  20. 20.
    Hamada, H. et al. Role of asymmetric signals in left-right patterning in the mouse. Am J Med Genet 101:324–327 (2001).PubMedCrossRefGoogle Scholar
  21. 21.
    Hamada, H., Meno, C., Watanabe, D. & Saijoh, Y. Establishment of vertebrate left-right asymmetry. Nat Rev Genet 3:103–113 (2002).PubMedCrossRefGoogle Scholar
  22. 22.
    Murray, J. D., Deeming, D. C. & Ferguson, M. W. Size-dependent pigmentation-pattern formation in embryos of Alligator mississippiensis: time of initiation of pattern generation mechanism. Proc R Soc Lond B Biol Sci 239:279–293 (1990).PubMedCrossRefGoogle Scholar
  23. 23.
    Meinhardt, H. The Algorithmic Beauty of Sea Shells. Springer, Berlin (2003).Google Scholar
  24. 24.
    Asai, R., Taguchi, E., Kume, Y., Saito, M. & Kondo, S. Zebrafish leopard gene as a component of the putative reaction-diffusion system. Mech Dev 89:87–92 (1999).PubMedCrossRefGoogle Scholar
  25. 25.
    Kelsh, R. N. Genetics and evolution of pigment patterns in fish. Pigment Cell Res 17:326–336 (2004).PubMedCrossRefGoogle Scholar
  26. 26.
    Hirata, M., Nakamura, K., Kanemaru, T., Shibata, Y. & Kondo, S. Pigment cell organization in the hypodermis of zebrafish. Dev Dyn 227:497–503 (2003).PubMedCrossRefGoogle Scholar
  27. 27.
    Yamaguchi, M., Yoshimoto, E. & Kondo, S. Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism. Proc Natl Acad Sci USA 104:4790–4793 (2007).PubMedCrossRefGoogle Scholar
  28. 28.
    Lister, J. A., Robertson, C. P., Lepage, T., Johnson, S. L. & Raible, D. W. nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development (Camb) 126:3757–3767 (1999).Google Scholar
  29. 29.
    Parichy, D. M., Rawls, J. F., Pratt, S. J., Whitfield, T. T. & Johnson, S. L. Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. Development (Camb) 126:3425–3436 (1999).Google Scholar
  30. 30.
    Parichy, D. M. et al. Mutational analysis of endothelin receptor b1 (rose) during neural crest and pigment pattern development in the zebrafish Danio rerio. Dev Biol 227:294–306 (2000).PubMedCrossRefGoogle Scholar
  31. 31.
    Parichy, D. M., Ransom, D. G., Paw, B., Zon, L. I. & Johnson, S. L. An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio. Development (Camb) 127:3031–3044 (2000).Google Scholar
  32. 32.
    Johnson, S. L., Africa, D., Walker, C. & Weston, J. A. Genetic control of adult pigment stripe development in zebrafish. Dev Biol 167:27–33 (1995).PubMedCrossRefGoogle Scholar
  33. 33.
    Rawls, J., EM., M. & SL., J. How the zebrafish gets its stripes. Dev Biol 240:301–314 (2001).PubMedCrossRefGoogle Scholar
  34. 34.
    Johnson, S. L., Africa, D., Horne, S. & Postlethwaite, J. H. Half-tetrad analysis in zebrafish: mapping the ros mutation and the centromere of linkage group I. Genetics 139:1727–1735 (1995).PubMedGoogle Scholar
  35. 35.
    Parichy, D. M. & Turner, J. M. Temporal and cellular requirements for Fms signaling during zebrafish adult pigment pattern development. Development (Camb) 130:817–833 (2003).CrossRefGoogle Scholar
  36. 36.
    Parichy, D. M., Turner, J. M. & Parker, N. B. Essential role for puma in development of postembryonic neural crest-derived cell lineages in zebrafish. Dev Biol 256:221–241 (2003).PubMedCrossRefGoogle Scholar
  37. 37.
    Maderspacher, F. & Nusslein-Volhard, C. Formation of the adult pigment pattern in zebrafish requires leopard and obelix dependent cell interactions. Development (Camb) 130:3447–3457 (2003).CrossRefGoogle Scholar
  38. 38.
    Kirschbaum, F. Untersuchungen ueber das Farbmuster der Zebrabarbe Brachydanio rerio (Cyprinidae, Teleostei). Wilhelm Roux's Arch 177:129–152 (1975).CrossRefGoogle Scholar
  39. 39.
    Iwashita, M. et al. Pigment pattern in jaguar/obelix zebrafish is caused by a Kir7.1 mutation: implications for the regulation of melanosome movement. PLoS Genet 2:e197 (2006).PubMedCrossRefGoogle Scholar
  40. 40.
    Doring, F. et al. The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. J Neurosci 18:8625–8636 (1998).PubMedGoogle Scholar
  41. 41.
    Nakamura, N., Suzuki, Y., Ikeda, Y., Notoya, M. & Hirose, S. Complex structure and regulation of expression of the rat gene for inward rectifier potassium channel Kir7.1. J Biol Chem 275:28276–28284 (2000).PubMedGoogle Scholar
  42. 42.
    Kim, S. J. et al. Inwardly rectifying K+ channels in the basolateral membrane of rat pancreatic acini. Pflugers Arch 441:331–340 (2000).PubMedCrossRefGoogle Scholar
  43. 43.
    Kusaka, S. et al. Functional Kir7.1 channels localized at the root of apical processes in rat retinal pigment epithelium. J Physiol 531:27–36 (2001).PubMedCrossRefGoogle Scholar
  44. 44.
    Shimura, M. et al. Expression and permeation properties of the K(+) channel Kir7.1 in the retinal pigment epithelium. J Physiol 531:329–346 (2001).PubMedCrossRefGoogle Scholar
  45. 45.
    Wischmeyer, E., Doring, F. & Karschin, A. Stable cation coordination at a single outer pore residue defines permeation properties in Kir channels. FEBS Lett 466:115–120 (2000).PubMedCrossRefGoogle Scholar
  46. 46.
    Suzuki, Y. et al. Expression of the K+ channel Kir7.1 in the developing rat kidney: role in K+ excretion. Kidney Int 63:969–675 (2003).PubMedCrossRefGoogle Scholar
  47. 47.
    Yasuda, K. et al. Expression and functional properties of unique inward rectifier K+ channel Kir7.1 in the porcine iris and retinal pigment epithelium. Curr Eye Res 27:279–287 (2003).PubMedCrossRefGoogle Scholar
  48. 48.
    Jantzi, M. C. et al. Inward rectifying potassium channels facilitate cell-to-cell communication in hamster retractor muscle feed arteries. Am J Physiol Heart Circ Physiol 291:H1319–H1328 (2006).PubMedCrossRefGoogle Scholar
  49. 49.
    Watanabe, M. et al. Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO Rep 7:893–897 (2006).PubMedCrossRefGoogle Scholar
  50. 50.
    Iovine, M. K., Higgins, E. P., Hindes, A., Coblitz, B. & Johnson, S. L. Mutations in con-nexin43 (GJA1) perturb bone growth in zebrafish fins. Dev Biol 278:208–219 (2005).PubMedCrossRefGoogle Scholar
  51. 51.
    Meinhardt, H. & Gierer, A. Pattern formation by local self-activation and lateral inhibition [see comment]. Bioessays 22:753–760 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Shigeru Kondo
    • 1
  1. 1.Division of Biological Science, Graduate School of ScienceNagoya University, Furo-cho, Chikusa-kuNagoya CityJapan

Personalised recommendations