The Cellular Basis of Dictyostelium Morphogenesis

  • Cornelis J. Weijer

One of the central aims of the study of development is to understand how distinct cellular behaviours, for example, division, differentiation, apoptosis, and movement, are coordinated in space and in time to result in reproducible pattern formation and morphogenesis. Coordination of these cellular behaviours requires extensive communication between cells of different types and between the cells and their environment. The social amoeba Dictyostelium discoideum, a simple genetically tractable organism situated at the threshold of single and multicellular organisms in the evolutionary tree of life, is well suited for the study of these interactions because its genome has been sequenced and it is amenable to experimental manipulation through targeted gene disruption and replacement (Kreppel, Fey et al. 2004; Eichinger, Pachebat et al. 2005). Dictyostelium cells normally live as single cells in the leaf litter of the soil where they feed on bacteria and divide by binary fission. Under starvation conditions, up to several hundred thousand cells aggregate chemotactically to form a multicellular structure the slug, that directed by light and temperature gradients migrates to the surface of the soil to form a fruiting body. The fruiting body is composed of a stalk supporting a mass of spores. The spores are a dormant stage which after dispersal may germinate to release amoebae, thus closing the life cycle (Fig. 1). We describe here key aspects of the signalling mechanisms coordinating cellular behaviours responsible for pattern formation and morphogenesis.


Fruiting Body Dictyostelium Discoideum Dictyostelium Cell Optical Density Wave Prespore Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrew, N. and R. H. Insall (2007). Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions. Nat Cell Biol 9(2):193–200.PubMedCrossRefGoogle Scholar
  2. Araki, T., T. Abe, et al. (1997). Symmetry breaking in Dictyostelium morphogenesis: evidence that a combination of cell cycle stage and positional information dictates cell fate. Dev Biol 192(2):645–648.PubMedCrossRefGoogle Scholar
  3. Bosgraaf, L. and P. J. van Haastert (2006). The regulation of myosin II in Dictyostelium. Eur J Cell Biol 85:969–979.PubMedCrossRefGoogle Scholar
  4. Bretschneider, T., S. Diez, et al. (2004). Dynamic actin patterns and Arp2/3 assembly at the substrate-attached surface of motile cells. Curr Biol 14(1):1–10.PubMedCrossRefGoogle Scholar
  5. Bukharova, T., G. Weijer, et al. (2005). Paxillin is required for cell-substrate adhesion, cell sorting and slug migration during Dictyostelium development. J Cell Sci 118(pt 18):4295–4310.PubMedCrossRefGoogle Scholar
  6. Chen, L., M. Iijima, et al. (2007). PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev Cell 12(4):603–614.PubMedCrossRefGoogle Scholar
  7. Chien, S., C. Y. Chung, et al. (2000). The Dictyostelium LIM domain-containing protein LIM2 is essential for proper chemotaxis and morphogenesis. Mol Biol Cell 11(4):1275–1291.PubMedGoogle Scholar
  8. Comer, F. I., C. K. Lippincott, et al. (2005). The PI3K-mediated activation of CRAC independently regulates adenylyl cyclase activation and chemotaxis. Curr Biol 15(2):134–139.PubMedCrossRefGoogle Scholar
  9. Cornillon, S., R. Froquet, et al. (2008). Involvement of Sib proteins in the regulation of cellular adhesion in Dictyostelium discoideum. Eukaryot Cell 7(9):1600–1605.PubMedCrossRefGoogle Scholar
  10. Dormann, D., T. Abe, et al. (2001). Inducible nuclear translocation of a STAT protein in Dictyostelium prespore cells: implications for morphogenesis and cell-type regulation. Development (Camb) 128(7):1081–1088.Google Scholar
  11. Dormann, D. and C. J. Weijer (2001). Propagating chemoattractant waves coordinate periodic cell movement in Dictyostelium slugs. Development (Camb) 128(22):4535–4543.Google Scholar
  12. Dormann, D. and C. J. Weijer (2003). Chemotactic cell movement during development. Curr Opin Genet Dev 13(4):358–364.PubMedCrossRefGoogle Scholar
  13. Dormann, D., G. Weijer, et al. (2002). Visualizing PI3 kinase-mediated cell-cell signaling during Dictyostelium development. Curr Biol 12(14):1178–1188.PubMedCrossRefGoogle Scholar
  14. Dormann, D., G. Weijer, et al. (2004). In vivo analysis of 3-phosphoinositide dynamics during Dictyostelium phagocytosis and chemotaxis. J Cell Sci 117(pt 26):6497–6509.PubMedCrossRefGoogle Scholar
  15. Eichinger, L., J. A. Pachebat, et al. (2005). The genome of the social amoeba Dictyostelium dis-coideum. Nature (Lond) 435(7038):43–57.CrossRefGoogle Scholar
  16. Eliott, S., P. H. Vardy, et al. (1991). The distribution of myosin-II in Dictyostelium discoideum slug cells. J Cell Biol 115:1267–1274.PubMedCrossRefGoogle Scholar
  17. Falk, D. L., D. Wessels, et al. (2003). Shared, unique and redundant functions of three members of the class I myosins (MyoA, MyoB and MyoF) in motility and chemotaxis in Dictyostelium. J Cell Sci 116(pt 19):3985–3999.PubMedCrossRefGoogle Scholar
  18. Franca-Koh, J., Y. Kamimura, et al. (2007). Leading-edge research: PtdIns(3,4,5)P3 and directed migration. Nat Cell Biol 9(1):15–17.CrossRefGoogle Scholar
  19. Fukuzawa, M., T. Abe, et al. (2003). The Dictyostelium prestalk cell inducer DIF regulates nuclear accumulation of a STAT protein by controlling its rate of export from the nucleus. Development (Camb) 130(4):797–804.CrossRefGoogle Scholar
  20. Goldberg, J. M., E. S. Wolpin, et al. (2006). Myosin light chain kinase A is activated by cGMP-dependent and cGMP-independent pathways. FEBS Lett 580(8):2059–2064.PubMedCrossRefGoogle Scholar
  21. Harris, T. J., A. Ravandi, et al. (2003). Cytoskeleton interactions involved in the assembly and function of glycoprotein-80 adhesion complexes in Dictyostelium. J Biol Chem 278(4):2614–2623.PubMedCrossRefGoogle Scholar
  22. Insall, R. and N. Andrew (2007). Chemotaxis in Dictyostelium: how to walk straight using parallel pathways. Curr Opin Microbiol 10(6):578–581.PubMedCrossRefGoogle Scholar
  23. Iranfar, N., D. Fuller, et al. (2003). Genome-wide expression analyses of gene regulation during early development of Dictyostelium discoideum. Eukaryot Cell 2(4):664–670.PubMedCrossRefGoogle Scholar
  24. Iwadate, Y. and S. Yumura (2008). Actin-based propulsive forces and myosin-II-based contractile forces in migrating Dictyostelium cells. J Cell Sci 121(pt 8):1314–1324.PubMedCrossRefGoogle Scholar
  25. Janetopoulos, C. and R. A. Firtel (2008). Directional sensing during chemotaxis. FEBS Lett 582:2075–2085.PubMedCrossRefGoogle Scholar
  26. Jang, W. and R. H. Gomer (2008). Combining experiments and modelling to understand size regulation in Dictyostelium discoideum. J R Soc Interface 6(5 suppl 1):S49–S58.CrossRefGoogle Scholar
  27. Kay, R. R. and C. R. Thompson (2001). Cross-induction of cell types in Dictyostelium: evidence that DIF-1 is made by prespore cells. Development (Camb) 128(24):4959–4966.Google Scholar
  28. Kibler, K., J. Svetz, et al. (2003). A cell-adhesion pathway regulates intercellular communication during Dictyostelium development. Dev Biol 264(2):506–521.PubMedCrossRefGoogle Scholar
  29. Kirsten, J. H., Y. Xiong, et al. (2005). Ammonium transporter C of Dictyostelium discoideum is required for correct prestalk gene expression and for regulating the choice between slug migration and culmination. Dev Biol 287(1):146–156.PubMedCrossRefGoogle Scholar
  30. Kreppel, L., P. Fey, et al. (2004). dictyBase: a new Dictyostelium discoideum genome database. Nucleic Acids Res 32(database issue):D332–D333.PubMedCrossRefGoogle Scholar
  31. Kriebel, P. W., V. A. Barr, et al. (2003). Adenylyl cyclase localization regulates streaming during chemotaxis. Cell 112(4):549–560.PubMedCrossRefGoogle Scholar
  32. Maeda, M., H. Sakamoto, et al. (2003). Changing patterns of gene expression in dictyostelium prestalk cell subtypes recognized by in situ hybridization with genes from microarray analyses. Eukaryot Cell 2(3):627–637.PubMedCrossRefGoogle Scholar
  33. Mahadeo, D. C. and C. A. Parent (2006). Signal relay during the life cycle of Dictyostelium. Curr Top Dev Biol 73:115–140.PubMedCrossRefGoogle Scholar
  34. Maruo, T., H. Sakamoto, et al. (2004). Control of cell type proportioning in Dictyostelium discoi-deum by differentiation-inducing factor as determined by in situ hybridization. Eukaryot Cell 3(5):1241–1248.PubMedCrossRefGoogle Scholar
  35. Meima, M. E., K. E. Weening, et al. (2003). Characterization of a cAMP-stimulated cAMP phos-phodiesterase in Dictyostelium discoideum. J Biol Chem 278(16):14356–14362.PubMedCrossRefGoogle Scholar
  36. Patel, H., K. D. Guo, et al. (2000). A temperature-sensitive adenylyl cyclase mutant of Dictyostelium. EMBO J 19(10):2247–2256.PubMedCrossRefGoogle Scholar
  37. Rafols, I., A. Amagai, et al. (2001). Cell type proportioning in Dictyostelium slugs: lack of regulation within a 2.5-fold tolerance range. Differentiation 67(4–5):107–116.PubMedCrossRefGoogle Scholar
  38. Saito, T., G. W. Taylor, et al. (2006). Identification of new differentiation inducing factors from Dictyostelium discoideum. Biochim Biophys Acta 1760(5):754–761.PubMedGoogle Scholar
  39. Saran, S., M. E. Meima, et al. (2002). cAMP signaling in Dictyostelium. Complexity of cAMP synthesis, degradation and detection. J Muscle Res Cell Motil 23(7–8):793–802.PubMedCrossRefGoogle Scholar
  40. Sasaki, A. T., C. Janetopoulos, et al. (2007). G protein-independent Ras/PI3K/F-actin circuit regulates basic cell motility. J Cell Biol 178(2):185–191.PubMedCrossRefGoogle Scholar
  41. Sawai, S., X. J. Guan, et al. (2007). High-throughput analysis of spatio-temporal dynamics in Dictyostelium. Genome Biol 8(7):R144.PubMedCrossRefGoogle Scholar
  42. Singleton, C. K., J. H. Kirsten, et al. (2006). Function of ammonium transporter A in the initiation of culmination of development in Dictyostelium discoideum. Eukaryot Cell 5(7):991–996.PubMedCrossRefGoogle Scholar
  43. Singleton, C. K., M. J. Zinda, et al. (1998). The histidine kinase dhkC regulates the choice between migrating slugs and terminal differentiation in Dictyostelium discoideum. Dev Biol 203(2):345–357.PubMedCrossRefGoogle Scholar
  44. Soll, D. R., D. Wessels, et al. (2003). Computer-assisted reconstruction and motion analysis of the three-dimensional cell. Sci World J 3:827–841.Google Scholar
  45. Springer, M. L., B. Patterson, et al. (1994). Stage-specific requirement for myosin II during Dictyostelium development. Development (Camb) 120:2651–2660.Google Scholar
  46. Thompson, C. R., Q. Fu, et al. (2004). A bZIP/bRLZ transcription factor required for DIF signaling in Dictyostelium. Development (Camb) 131(3):513–523.CrossRefGoogle Scholar
  47. Tsujioka, M., K. Yoshida, et al. (2004). Talin B is required for force transmission in morphogenesis of Dictyostelium. EMBO J 23(11):2216–2225.PubMedCrossRefGoogle Scholar
  48. Uchida, K. S. and S. Yumura (2004). Dynamics of novel feet of Dictyostelium cells during migration. J Cell Sci 117(pt 8):1443–1455.PubMedCrossRefGoogle Scholar
  49. Umeda, T. and K. Inouye (2002). Possible role of contact following in the generation of coherent motion of Dictyostelium cells. J Theor Biol 219(3):301–308.PubMedCrossRefGoogle Scholar
  50. Umeda, T. and K. Inouye (2004). Cell sorting by differential cell motility: a model for pattern formation in Dictyostelium. J Theor Biol 226(2):215–224.PubMedCrossRefGoogle Scholar
  51. Vasiev, B., F. Siegert, et al. (1997). A hydrodynamic model for Dictyostelium discoideum mound formation. J Theor Biol 184(4):441.CrossRefGoogle Scholar
  52. Vasiev, B. and C. J. Weijer (1999). Modeling chemotactic cell sorting during Dictyostelium dis-coideum mound formation. Biophys J 76(2):595–605.PubMedCrossRefGoogle Scholar
  53. Vasiev, B. and C. J. Weijer (2003). Modelling of Dictyostelium discoideum slug migration. J Theor Biol 223(3):347–359.PubMedCrossRefGoogle Scholar
  54. Verkerke-van Wijk, I., M. Fukuzawa, et al. (2001). Adenylyl cyclase A expression is tip-specific in Dictyostelium slugs and directs StatA nuclear translocation and CudA gene expression. Dev Biol 234(1):151–160.PubMedCrossRefGoogle Scholar
  55. Weening, K. E., I. V. Wijk, et al. (2003). Contrasting activities of the aggregative and late PDSA promoters in Dictyostelium development. Dev Biol 255(2):373–382.PubMedCrossRefGoogle Scholar
  56. Weijer, C. J. (2004). Dictyostelium morphogenesis. Curr Opin Genet Dev 14(4):392–398.PubMedCrossRefGoogle Scholar
  57. Willard, S. S. and P. N. Devreotes (2006). Signaling pathways mediating chemotaxis in the social amoeba, Dictyostelium discoideum. Eur J Cell Biol 85(9–10):897–904.PubMedCrossRefGoogle Scholar
  58. Williams, J. G. (2006). Transcriptional regulation of Dictyostelium pattern formation. EMBO Rep 7(7):694–698.PubMedCrossRefGoogle Scholar
  59. Wong, E., C. Yang, et al. (2002). Disruption of the gene encoding the cell adhesion molecule DdCAD-1 leads to aberrant cell sorting and cell-type proportioning during Dictyostelium development. Development (Camb) 129(16):3839–3850.Google Scholar
  60. Yumura, S., M. Yoshida, et al. (2005). Multiple myosin II heavy chain kinases: roles in filament assembly control and proper cytokinesis in Dictyostelium. Mol Biol Cell 16(9):4256–4266.PubMedCrossRefGoogle Scholar
  61. Zhang, H., P. J. Heid, et al. (2003). Constitutively active protein kinase A disrupts motility and chemotaxis in Dictyostelium discoideum. Eukaryot Cell 2(1):62–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Cornelis J. Weijer
    • 1
  1. 1.Division of Cell and Developmental Biology, School of Life SciencesUniversity of DundeeDundeeUK

Personalised recommendations