The Molecular and Cellular Design of Networks in Motion

  • Sten Grillner
  • Peter Wallén
  • Russell Hill
Conference paper

In this chapter, we review the extensive knowledge gained on the lamprey nervous system through an interactive process between experiments and modeling [1–3]. The organization of the locomotor system is to a large extent conserved through vertebrate phylogeny, and it is therefore also pertinent to explore to what extent this knowledge can be applied to the more complex mammalian nervous system. The overall aim is to account for this complex set of behaviors, based on an understanding of the intrinsic cellular mechanisms determining the operation of the different neuronal networks.

The different subsystems involved in the control of locomotion can be represented as follows (Fig. 1).


Central Pattern Generator Reticulospinal Neuron Excitatory Interneuron Intersegmental Coordination Mesencephalic Locomotor Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grillner, S. Neuronal networks in motion from ion channels to behaviour. An R Acad Nac Med (Madr) 2006;123(2):297–8.Google Scholar
  2. 2.
    Grillner, S., et al. Neural bases of goal-directed locomotion in vertebrates: an overview. Brain Res Rev 2008;57(1):2–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Grillner, S. The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 2003;4(7):573–86.PubMedCrossRefGoogle Scholar
  4. 4.
    Grillner, S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 2006;52(5): 751–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Wannier, T., et al. Differential effects of the reticulospinal system on locomotion in lamprey. J Neurophysiol 1998;80(1):103–12.PubMedGoogle Scholar
  6. 6.
    Deliagina, T.G., et al. Vestibular control of swimming in lamprey. III. Activity of vestibular afferents: convergence of vestibular inputs on reticulospinal neurons. Exp Brain Res 1992;90(3):499–507.PubMedCrossRefGoogle Scholar
  7. 7.
    Cangiano, L. and S. Grillner. Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord. J Neurosci 2005;25(4):923–35.PubMedCrossRefGoogle Scholar
  8. 8.
    Cangiano, L. and S. Grillner. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey. J Neurophysiol 2003;89(6):2931–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Parker, D. and S. Grillner. The activity-dependent plasticity of segmental and intersegmental synaptic connections in the lamprey spinal cord. Eur J Neurosci 2000;12(6):2135–46.PubMedCrossRefGoogle Scholar
  10. 10.
    Buchanan, J.T. and S. Grillner. A new class of small inhibitory interneurones in the lamprey spinal cord. Brain Res 1988;438(1–2):404–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Buchanan, J.T., et al. Identification of excitatory interneurons contributing to generation of locomotion in lamprey: structure, pharmacology, and function. J Neurophysiol 1989;62(1):59–69.PubMedGoogle Scholar
  12. 12.
    Biro, Z., R.H. Hill, and S. Grillner. 5-HT modulation of identified segmental premotor interneurons in the lamprey spinal cord. J Neurophysiol 2006;96:931–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Dale, N. Excitatory synaptic drive for swimming mediated by amino acid receptors in the lamprey. J Neurosci 1986;6(9):2662–75.PubMedGoogle Scholar
  14. 14.
    Hill, R., et al. Apamin blocks the slow AHP in lamprey and delays termination of locomotor bursts. Neuroreport 1992;3(10):943–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Wallen, P., et al. Sodium-dependent potassium channels of a Slack-like subtype contribute to the slow afterhyperpolarization in lamprey spinal neurons. J Physiol 2007;585(Pt 1):75–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Buchanan, J.T. Identification of interneurons with contralateral, caudal axons in the lamprey spinal cord: synaptic interactions and morphology. J Neurophysiol 1982;47(5):961–75.PubMedGoogle Scholar
  17. 17.
    Ohta, Y. and S. Grillner. Monosynaptic excitatory amino acid transmission from the posterior rhombencephalic reticular nucleus to spinal neurons involved in the control of locomotion in lamprey. J Neurophysiol 1989;62(5):1079–89.PubMedGoogle Scholar
  18. 18.
    Hellgren, J., S. Grillner, and A. Lansner. Computer simulation of the segmental neural network generating locomotion in lamprey by using populations of network interneurons. Biol Cybern 1992;68(1):1–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Wallen, P. and T.L. Williams. Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal. J Physiol (Lond) 1984;347:225–39.Google Scholar
  20. 20.
    Williams, T., et al. Locomotion in lamprey and trout: the relative timing of activation and movement. J Exp Biol 1989;143:559–66.Google Scholar
  21. 21.
    Grillner, S. On the generation of locomotion in the spinal dogfish. Exp Brain Res 1974;20(5):459–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Islam, S.S., et al. Pattern of motor coordination underlying backward swimming in the lamprey. J Neurophysiol 2006;96(1):451–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Matsushima, T. and S. Grillner. Neural mechanisms of intersegmental coordination in lamprey: local excitability changes modify the phase coupling along the spinal cord. J Neurophysiol 1992;67(2):373–88.PubMedGoogle Scholar
  24. 24.
    Cohen, A.H., et al. Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion. Trends Neurosci 1992;15(11): 434–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Deliagina, T.G., P.V. Zelenin, and G.N. Orlovsky. Encoding and decoding of reticulospinal commands. Brain Res Brain Res Rev 2002;40(1–3):166–77.PubMedCrossRefGoogle Scholar
  26. 26.
    Deliagina, T.G., et al. Activity of reticulospinal neurons during locomotion in the freely behaving lamprey. J Neurophysiol 2000;83(2):853–63.PubMedGoogle Scholar
  27. 27.
    Fagerstedt, P., et al. Lateral turns in the lamprey. II. Activity of reticulospinal neurons during the generation of fictive turns. J Neurophysiol 2001;86(5):2257–65.PubMedGoogle Scholar
  28. 28.
    Kozlov, A.K., et al. Modeling postural control in the lamprey. Biol Cybern 2001;84(5):323–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Saitoh, K., A. Ménard, and S. Grillner. Coordination of eye and locomotor movement elicited from the lamprey tectum. In: SFN Annual Meeting 2004, San Diego.Google Scholar
  30. 30.
    El Manira, A. and P. Wallen. Mechanisms of modulation of a neural network. News Physiol Sci 2000;15:186–191.PubMedGoogle Scholar
  31. 31.
    Christenson, J.P., et al. 5-Hydroxytryptamine depresses reticulospinal excitatory postsynaptic potentials in motoneurones of the lamprey. In: Fuxe L.F.A.K. (ed) Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission. Raven Press, New York: 1991:159–70.Google Scholar
  32. 32.
    Hill, R.H., et al. 5-HT inhibits N-type but not L-type Ca(2+) channels via 5-HT1A receptors in lamprey spinal neurons. Eur J Neurosci 2003;18(11):2919–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Wallen, P., et al. Effects of 5-hydroxytryptamine on the afterhyperpolarization, spike frequency regulation, and oscillatory membrane properties in lamprey spinal cord neurons. J Neurophysiol 1989;61(4):759–68.PubMedGoogle Scholar
  34. 34.
    Biro, Z., R.H. Hill, and S. Grillner. 5-HT modulation of identified segmental premotor interneurons in the lamprey spinal cord. J Neurophysiol 2006;96(2):931–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Jacobs, B.L. and C.A. Fornal. Serotonin and motor activity. Curr Opin Neurobiol 1997;7(6):820–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Liu, J. and L.M. Jordan. Stimulation of the parapyramidal region of the neonatal rat brain stem produces locomotor-like activity involving spinal 5-HT7 and 5-HT2A receptors. J Neurophysiol 2005;94(2):1392–404.PubMedCrossRefGoogle Scholar
  37. 37.
    El Manira, A., et al. Metabotropic glutamate receptors provide intrinsic modulation of the lamprey locomotor network. Brain Res Brain Res Rev 2002;40(1–3):9–18.CrossRefGoogle Scholar
  38. 38.
    Kettunen, P., et al. Neuromodulation via conditional release of endocannabinoids in the spinal locomotor network. Neuron 2005;45(1):95–104.PubMedCrossRefGoogle Scholar
  39. 39.
    Parker, D., W. Zhang, and S. Grillner. Substance P modulates NMDA responses and causes long-term protein synthesis-dependent modulation of the lamprey locomotor network. J Neurosci 1998;18(12):4800–13.PubMedGoogle Scholar
  40. 40.
    Perez, C.T., R.H. Hill, and S. Grillner. Endogenous tachykinin release contributes to the loco-motor activity in lamprey. J Neurophysiol 2007;97(5):3331–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Parker, D. and S. Grillner. Activity-dependent metaplasticity of inhibitory and excitatory synaptic transmission in the lamprey spinal cord locomotor network. J Neurosci 1999;19(5):1647–56.PubMedGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Sten Grillner
    • 1
  • Peter Wallén
    • 2
  • Russell Hill
    • 2
  1. 1.Nobel Institute for Neurophysiology, Department of NeuroscienceKarolinska InsititutetStockholmSweden
  2. 2.Computational Biology and NeurocomputingSchool of Computer Science and Communication, Royal Institute of TechnologyStockholmSweden

Personalised recommendations