Computational Models of Cerebellar Long-Term Memory

  • Hideaki Ogasawara
  • Mitsuo Kawato

Our brain is capable of learning new things while maintaining old memory. Retention of information requires stability, and new learning requires plasticity. As a memory device, neurons have to meet these contradictory requirements (the “stability versus plasticity dilemma” [1]), but stochastic noise makes this duty still more difficult. The dendritic spine, the key unit of neuronal information processing, is very small (̃1 μm or less in diameter) and contains only a limited number of each molecular species. For instance, the number of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPARs) in a parallel fiber (PF)—Purkinje cell (PC) synapse is as small as 4 to 73 [2]. In such a minute environment, stochastic fluctuations come into play and, affect the signaling pathways underlying memory formation and maintenance. How do neurons handle the stability versus plasticity dilemma without being overwhelmed by the noise? In this chapter, we address this issue by reviewing several theoretical studies of cerebellar long-term depression (LTD) and simulating simple models.


Dendritic Spine Stable Steady State Bistable Switch Inositol Trisphosphate Receptor Fast Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham WC, Robins A (2005) Memory retention: the synaptic stability versus plasticity dilemma. Trends Neurosci 28:73–78PubMedCrossRefGoogle Scholar
  2. 2.
    Masugi-Tokita M, Tarusawa E, Watanabe M, Molnar E, Fujimoto K, Shigemoto R (2007) Number and density of AMPA receptors in individual synapses in the rat cerebellum as revealed by SDS-digested freeze-fracture replica labeling. J Neurosci 27:2135–2144PubMedCrossRefGoogle Scholar
  3. 3.
    Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470PubMedGoogle Scholar
  4. 4.
    Ito M (1970) Neurophysiological aspects of the cerebellar motor control system. Int J Neurol 7:162–176PubMedGoogle Scholar
  5. 5.
    Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61CrossRefGoogle Scholar
  6. 6.
    Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195PubMedGoogle Scholar
  7. 7.
    Ito M (2002) The molecular organization of cerebellar long-term depression. Nat Rev Neurosci 3:896–902PubMedCrossRefGoogle Scholar
  8. 8.
    Hartell NA (2002) Parallel fiber plasticity. Cerebellum 1:3–18PubMedCrossRefGoogle Scholar
  9. 9.
    Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303PubMedCrossRefGoogle Scholar
  10. 10.
    Jörntell H, Hansel C (2006) Synaptic memories upside down: bidirectional plasticity at cere-bellar parallel fiber-Purkinje cell synapses. Neuron 52:227–238PubMedCrossRefGoogle Scholar
  11. 11.
    Iino M (2006) Ca2+-dependent inositol 1,4,5-trisphosphate and nitric oxide signaling in cere-bellar neurons. J Pharmacol Sci 100:538–544PubMedCrossRefGoogle Scholar
  12. 12.
    Ferrell JE Jr, Machleder EM (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280:895–898PubMedCrossRefGoogle Scholar
  13. 13.
    Kuroda S, Schweighofer N, Kawato M (2001) Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J Neurosci 21:5693–5702PubMedGoogle Scholar
  14. 14.
    Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 25:950–961PubMedCrossRefGoogle Scholar
  15. 15.
    Ogasawara H, Doi T, Kawato M (2008) Systems biology perspectives on cerebellar long-term depression. NeuroSignals 16:300–317PubMedCrossRefGoogle Scholar
  16. 16.
    Sarkisov DV, Wang SS (2008) Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor. J Neurosci 28:133–142PubMedCrossRefGoogle Scholar
  17. 17.
    Ogasawara H (2008) The calcium kinetics and inositol trisphosphate receptor properties shape the asymmetric timing window of coincidence detection. J. Neurosci 28:4293–4294PubMedCrossRefGoogle Scholar
  18. 18.
    Tanaka K, Khiroug L, Santamaria F, Doi T, Ogasawara H, Ellis-Davies GC, Kawato M, Augustine GJ (2007) Ca2+ requirements for cerebellar long-term synaptic depression: role for a postsynaptic leaky integrator. Neuron 54:787–800PubMedCrossRefGoogle Scholar
  19. 19.
    Tanaka K, Augustine GJ (2008) A positive feedback signal transduction loop determines timing of cerebellar long-term depression. Neuron 59:608–620PubMedCrossRefGoogle Scholar
  20. 20.
    Ramakrishnan N, Bhalla US (2008) Memory switches in chemical reaction space. PLoS Comput Biol 4:e1000122PubMedCrossRefGoogle Scholar
  21. 21.
    Kawato M (2008) From ‘understanding the brain by creating the brain’ towards manipulative neuroscience. Philos Trans R Soc Lond B Biol Sci 363:2201–2214PubMedCrossRefGoogle Scholar
  22. 22.
    Sacktor TC (2008) PKMζ, LTP maintenance, and the dynamic molecular biology of memory storage. Prog Brain Res 169:27–40PubMedCrossRefGoogle Scholar
  23. 23.
    Shema R, Sacktor TC, Dudai Y (2007) Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKMζ. Science 317:951–953PubMedCrossRefGoogle Scholar
  24. 24.
    Hernandez AI, Blace N, Crary JF, Serrano PA, Leitges M, Libien JM, Weinstein G, Tcherapanov A, Sacktor TC (2003) Protein kinase Mζ synthesis from a brain mRNA encoding an independent protein kinase Cζ catalytic domain. Implications for the molecular mechanism of memory. J Biol Chem 278:40305–40316PubMedCrossRefGoogle Scholar
  25. 25.
    Oster H, Eichele G, Leitges M (2004) Differential expression of atypical PKCs in the adult mouse brain. Brain Res Mol Brain Res 127:79–88PubMedCrossRefGoogle Scholar
  26. 26.
    Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136PubMedCrossRefGoogle Scholar
  27. 27.
    Silva AJ, Stevens CF, Tonegawa S, Wang Y (1992) Deficient hippocampal long-term potentia-tion in alpha-calcium-calmodulin kinase II mutant mice. Science 257:201–206PubMedCrossRefGoogle Scholar
  28. 28.
    Hansel C, de Jeu M, Belmeguenai A, Houtman SH, Buitendijk GH, Andreev D, De Zeeuw CI, Elgersma Y (2006) αCaMKII Is essential for cerebellar LTD and motor learning. Neuron 51:835–843PubMedCrossRefGoogle Scholar
  29. 29.
    Goldbeter A, Koshland DE Jr (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 78:6840–6844PubMedCrossRefGoogle Scholar
  30. 30.
    Ferrell JE Jr (1999) Building a cellular switch: more lessons from a good egg. Bioessays 21:866–870PubMedCrossRefGoogle Scholar
  31. 31.
    Shibuki K, Kimura S (1997) Dynamic properties of nitric oxide release from parallel fibres in rat cerebellar slices. J Physiol 498(pt 2):443–452PubMedGoogle Scholar
  32. 32.
    Lev-Ram V, Wong ST, Storm DR, Tsien RY (2002) A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci USA 99:8389–8393PubMedCrossRefGoogle Scholar
  33. 33.
    Kakegawa W, Yuzaki M (2005) A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation. Proc Natl Acad Sci USA 102:17846–17851PubMedCrossRefGoogle Scholar
  34. 34.
    Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361CrossRefGoogle Scholar
  35. 35.
    Brandman O, Ferrell JE Jr, Li R, Meyer T (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310:496–498PubMedCrossRefGoogle Scholar
  36. 36.
    Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Hideaki Ogasawara
    • 1
    • 2
  • Mitsuo Kawato
    • 2
  1. 1.National Institute of Information and Communications TechnologySeikaJapan
  2. 2.ATR Computational Neuroscience LaboratoriesSeikaJapan

Personalised recommendations