The Apoptotic Signaling Network Dynamically Interprets the Outputs of Individual Signaling Pathways in an Early Analog and Late Digital Manner

  • Kevin A. Janes
  • H. Christian Reinhardt
  • Michael B. Yaffe
Conference paper

Changes in cell behavior are determined by a network of proteins that actively transmits signaling information (Irish et al., 2004; Jordan et al., 2000; Pawson, 2004). Modulation of total levels of key proteins, as well as their posttranslational states and enzymatic activities, could all potentially act as “molecular signals” that are monitored and interpreted. To understand how complex signal-transduction events control cell responses, these molecular signals must be measured dynamically and then mapped to downstream changes in cell outcome (Gaudet et al., 2005; Janes et al., 2005). Such approaches can accurately predict diverse cellular responses and suggest how molecular information is organized and propagated within the cell (Miller-Jensen et al., 2007).

One crucial cell decision is whether to die or to survive (Green and Evan, 2002; Kyriakis, 2001; Tran et al., 2004). Apoptosis is a common mechanism of cell death in response to many intrinsic and extrinsic cytotoxic cues such as cytokines and DNA damage (Strasser et al., 2000; Zhou and Elledge, 2000). Neighboring cells can also directly induce apoptosis in a target cell by secreting prodeath factors. Although cell death is important for normal development and tissue homeostasis, it is irreversible, requiring apoptosis to be tightly controlled. Deregulated apoptosis is known to be involved in many human diseases such as cancer (Rudin and Thompson, 1997; Vaux, 1993).


Molecular Signal Signaling Metrics Analog Signal Processing Reinforce Concrete Bridge Intracellular Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggarwal, B. B. (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756.PubMedCrossRefGoogle Scholar
  2. Alon, U., Camarena, L., Surette, M. G., Aguera y Arcas, B., Liu, Y., Leibler, S., and Stock, J. B. (1998). Response regulator output in bacterial chemotaxis. EMBO J 17:4238–4248.PubMedCrossRefGoogle Scholar
  3. Altan-Bonnet, G., and Germain, R. N. (2005). Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol 3:e356.PubMedCrossRefGoogle Scholar
  4. Baud, V., and Karin, M. (2001). Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11:372–377.PubMedCrossRefGoogle Scholar
  5. Chansawat, K., Yim, S. C. S., and Miller, T. H. (2006). Nonlinear finite element analysis of a FRP-strengthened reinforced concrete bridge. J Bridge Eng 11:21–32.CrossRefGoogle Scholar
  6. Deng, Y., Ren, X., Yang, L., Lin, Y., and Wu, X. (2003). A JNK-dependent pathway is required for TNF-alpha-induced apoptosis. Cell 115:61–70.PubMedCrossRefGoogle Scholar
  7. Garcia-Lloret, M. I., Yui, J., Winkler-Lowen, B., and Guilbert, L. J. (1996). Epidermal growth factor inhibits cytokine-induced apoptosis of primary human trophoblasts. J Cell Physiol 167:324–332.PubMedCrossRefGoogle Scholar
  8. Gaudet, S., Janes, K. A., Albeck, J. G., Pace, E. A., Lauffenburger, D. A., and Sorger, P. K. (2005). A compendium of signals and responses triggered by prodeath and prosurvival cytokines. Mol Cell Proteomics 4:1569–1590.PubMedCrossRefGoogle Scholar
  9. Geladi, P., and Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17.CrossRefGoogle Scholar
  10. Green, D. R., and Evan, G. I. (2002). A matter of life and death. Cancer Cell 1:19–30.PubMedCrossRefGoogle Scholar
  11. Hasty, J., McMillen, D., and Collins, J. J. (2002). Engineered gene circuits. Nature (Lond) 420:224–230.CrossRefGoogle Scholar
  12. Hood, L., and Galas, D. (2003). The digital code of DNA. Nature (Lond) 421:444–448.CrossRefGoogle Scholar
  13. Hua, F., Cornejo, M. G., Cardone, M. H., Stokes, C. L., and Lauffenburger, D. A. (2005). Effects of bcl-2 levels on fas signaling-induced caspase-3 activation: molecular genetic tests of computational model predictions. J Immunol 175:985–995.PubMedGoogle Scholar
  14. Irish, J. M., Hovland, R., Krutzik, P. O., Perez, O. D., Bruserud, O., Gjertsen, B. T., and Nolan, G. P. (2004). Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118:217–228.PubMedCrossRefGoogle Scholar
  15. Janes, K. A., and Yaffe, M. B. (2006). Data-driven modelling of signal-transduction networks. Nat Rev Mol Cell Biol 7:820–828.PubMedCrossRefGoogle Scholar
  16. Janes, K. A., Kelly, J. R., Gaudet, S., Albeck, J. G., Sorger, P. K., and Lauffenburger, D. A. (2004). Cue-signal-response analysis of TNF-induced apoptosis by partial least squares regression of dynamic multivariate data. J Comput Biol 11:544–561.PubMedCrossRefGoogle Scholar
  17. Janes, K. A., Albeck, J. G., Gaudet, S., Sorger, P. K., Lauffenburger, D. A., and Yaffe, M. B. (2005). A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310:1646–1653.PubMedCrossRefGoogle Scholar
  18. Janes, K. A., Gaudet, S., Albeck, J. G., Nielsen, U. B., Lauffenburger, D. A., and Sorger, P. K. (2006). The response of human epithelial cells to TNF involves an inducible autocrine cascade. Cell 124:1225–1239.PubMedCrossRefGoogle Scholar
  19. Jordan, J. D., Landau, E. M., and Iyengar, R. (2000). Signaling networks: the origins of cellular multitasking. Cell 103:193–200.PubMedCrossRefGoogle Scholar
  20. Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663.PubMedCrossRefGoogle Scholar
  21. Khatir, Z., Lefebvre, S., and Saint-Eve, F. (2007). Experimental and numerical investigations on delayed short-circuit failure mode of single chip IGBT devices. Microelectron Reliab 47:422–428.CrossRefGoogle Scholar
  22. Kyriakis, J. M. (2001). Life-or-death decisions. Nature (Lond) 414:265–266.CrossRefGoogle Scholar
  23. Lamb, J. A., Ventura, J. J., Hess, P., Flavell, R. A., and Davis, R. J. (2003). JunD mediates survival signaling by the JNK signal transduction pathway. Mol Cell 11:1479–1489.PubMedCrossRefGoogle Scholar
  24. Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185.PubMedCrossRefGoogle Scholar
  25. McAdams, H. H., and Shapiro, L. (1995). Circuit simulation of genetic networks. Science 269:650–656.PubMedCrossRefGoogle Scholar
  26. McAdams, H. H., and Shapiro, L. (2003). A bacterial cell-cycle regulatory network operating in time and space. Science 301:1874–1877.PubMedCrossRefGoogle Scholar
  27. Micheau, O., and Tschopp, J. (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190.PubMedCrossRefGoogle Scholar
  28. Miller-Jensen, K., Janes, K. A., Brugge, J. S., and Lauffenburger, D. A. (2007). Common effector processing mediates cell-specific responses to stimuli. Nature (Lond) 448:604–608.CrossRefGoogle Scholar
  29. Murphy, L. O., and Blenis, J. (2006). MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31:268–275.PubMedCrossRefGoogle Scholar
  30. Pawson, T. (2004). Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116:191–203.PubMedCrossRefGoogle Scholar
  31. Price, N. D., Papin, J. A., Schilling, C. H., and Palsson, B. O. (2003). Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 21:162–169.PubMedCrossRefGoogle Scholar
  32. Remacle-Bonnet, M. M., Garrouste, F. L., Heller, S., Andre, F., Marvaldi, J. L., and Pommier, G. J. (2000). Insulin-like growth factor-I protects colon cancer cells from death factor-induced apoptosis by potentiating tumor necrosis factor alpha-induced mitogen-activated protein kinase and nuclear factor kappaB signaling pathways. Cancer Res 60:2007–2017.PubMedGoogle Scholar
  33. Riedl, S. J., and Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907.PubMedCrossRefGoogle Scholar
  34. Roulston, A., Reinhard, C., Amiri, P., and Williams, L. T. (1998). Early activation of c-Jun N-terminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor alpha. J Biol Chem 273:10232–10239.PubMedCrossRefGoogle Scholar
  35. Rudin, C. M., and Thompson, C. B. (1997). Apoptosis and disease: regulation and clinical relevance of programmed cell death. Annu Rev Med 48:267–281.PubMedCrossRefGoogle Scholar
  36. Ruf, F., Park, M. J., Hayot, F., Lin, G., Roysam, B., Ge, Y., and Sealfon, S. C. (2006). Mixed analog/digital gonadotrope biosynthetic response to gonadotropin-releasing hormone. J Biol Chem 281:30967–30978.PubMedCrossRefGoogle Scholar
  37. Strasser, A., O'Connor, L., and Dixit, V. M. (2000). Apoptosis signaling. Annu Rev Biochem 69:217–245.PubMedCrossRefGoogle Scholar
  38. Tran, S. E., Meinander, A., and Eriksson, J. E. (2004). Instant decisions: transcription-independent control of death-receptor-mediated apoptosis. Trends Biochem Sci 29:601–608.PubMedCrossRefGoogle Scholar
  39. Truman, C. E., and Booker, J. D. (2007). Analysis of a shrink-fit failure on a gear hub/shaft assembly. Eng Fail Anal 14:557–572.CrossRefGoogle Scholar
  40. Vaux, D. L. (1993). Toward an understanding of the molecular mechanisms of physiological cell death. Proc Natl Acad Sci USA 90:786–789.PubMedCrossRefGoogle Scholar
  41. Ventura, J. J., Cogswell, P., Flavell, R. A., Baldwin, A. S., Jr., and Davis, R. J. (2004). JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 18:2905–2915.PubMedCrossRefGoogle Scholar
  42. Wajant, H., Pfizenmaier, K., and Scheurich, P. (2003). Tumor necrosis factor signaling. Cell Death Differ 10:45–65.PubMedCrossRefGoogle Scholar
  43. Zhou, B. B., and Elledge, S. J. (2000). The DNA damage response: putting checkpoints in perspective. Nature (Lond) 408:433–439.CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Kevin A. Janes
    • 1
    • 2
  • H. Christian Reinhardt
    • 1
  • Michael B. Yaffe
    • 1
  1. 1.Koch Institute for Integrative Cancer Research, Center for Cell Decision Processes, Department of Biology, and Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Cell BiologyHarvard Medical SchoolBostonUSA

Personalised recommendations