Integrative Synaptic Mechanisms of the Neural Network

  • Shigetada Nakanishi
Conference paper

The cerebellum is a key neural substrate for motor coordination and motor learning [1,2]. The main neural circuitry of the cerebellum consists of two excitatory gluta-matergic pathways: the pons–mossy fiber–granule cell–parallel fibers and the inferior olive–climbing fibers [1]. The inputs of mossy fibers and climbing fibers converge on Purkinje cells in the cerebellar cortex and deep cerebellar nuclei [1]. Besides this main circuitry, Golgi cells receive excitatory parallel fiber input and suppress granule cell transmission via the inhibitory gamma-aminobutyric acid (GABA) transmitter. The cerebellar network has been well characterized by elec-trophysiology and morphology, and its input/output relationship is also relatively well quantitatively assessed by both electrophysiological and behavioral analysis. Our investigations have been concerned with the regulatory mechanisms of integra-tive synaptic transmission, which is responsible for motor learning and motor coordination in the cerebellar circuitry.


Purkinje Cell Granule Cell Mossy Fiber Cerebellar Granule Cell Parallel Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Llinas RR, Walton KD. Cerebellum. In: Shepherd GM (ed) The Synaptic Organization of the Brain. Oxford: Oxford University Press, 1998:255–288.Google Scholar
  2. 2.
    Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001;81(3):1143–95.PubMedGoogle Scholar
  3. 3.
    Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem 2003;10(6):427–55.PubMedCrossRefGoogle Scholar
  4. 4.
    Mauk MD. Roles of cerebellar cortex and nuclei in motor learning: contradictions or clues? Neuron 1997;18(3):343–6.PubMedCrossRefGoogle Scholar
  5. 5.
    De Zeeuw CI, Yeo CH. Time and tide in cerebellar memory formation. Curr Opin Neurobiol 2005;15(6):667–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Yamamoto M, Wada N, Kitabatake Y, Watanabe D, Anzai M, Yokoyama M, Teranishi Y, Nakanishi S. Reversible suppression of glutamatergic neurotransmission of cerebellar granule cells in vivo by genetically manipulated expression of tetanus neurotoxin light chain. J Neurosci 2003;23(17):6759–67.PubMedGoogle Scholar
  7. 7.
    Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by pro-teolytic cleavage of synaptobrevin. Nature (Lond) 1992;359(6398):832–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Wada N, Kishimoto Y, Watanabe D, Kano M, Hirano T, Funabiki K, Nakanishi S. Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission. Proc Natl Acad Sci USA 2007;104(42):16690–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Ito M. Long-term depression. Annu Rev Neurosci 1989;12:85–102.PubMedCrossRefGoogle Scholar
  10. 10.
    Linden DJ. Neuroscience. From molecules to memory in the cerebellum. Science 2003;301(5640):1682–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Gabbiani F, Midtgaard J, Knopfel T. Synaptic integration in a model of cerebellar granule cells. J Neurophysiol 1994;72(2):999–1009.PubMedGoogle Scholar
  12. 12.
    Singer W. Neurophysiology: the changing face of inhibition. Curr Biol 1996;6(4):395–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Watanabe D, Inokawa H, Hashimoto K, Suzuki N, Kano M, Shigemoto R, Hirano T, Toyama K, Kaneko S, Yokoi M, Moriyoshi K, Suzuki M, Kobayashi K, Nagatsu T, Kreitman RJ, Pastan I, Nakanishi S. Ablation of cerebellar Golgi cells disrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination. Cell 1998;95(1):17–27.PubMedCrossRefGoogle Scholar
  14. 14.
    Nakanishi S. Synaptic mechanisms of the cerebellar cortical network. Trends Neurosci 2005;28(2):93–100.PubMedCrossRefGoogle Scholar
  15. 15.
    Brickley SG, Cull-Candy SG, Farrant M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 1996;497(pt 3):753–9.PubMedGoogle Scholar
  16. 16.
    Wall MJ, Usowicz MM. Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur J Neurosci 1997;9(3):533–48.PubMedCrossRefGoogle Scholar
  17. 17.
    De Schutter E, Bjaalie JG. Coding in the granular layer of the cerebellum. Prog Brain Res 2001;130:279–96.PubMedCrossRefGoogle Scholar
  18. 18.
    Watanabe D, Nakanishi S. mGluR2 postsynaptically senses granule cell inputs at Golgi cell synapses. Neuron 2003;39(5):821–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science 1992;258(5082):597–603.PubMedCrossRefGoogle Scholar
  20. 20.
    Yokoi M, Kobayashi K, Manabe T, Takahashi T, Sakaguchi I, Katsuura G, Shigemoto R, Ohishi H, Nomura S, Nakamura K, Nakao K, Katsuki M, Nakanishi S. Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science 1996;273(5275):645–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Shigetada Nakanishi
    • 1
  1. 1.Osaka Bioscience InstituteSuitaJapan

Personalised recommendations