Skip to main content

Degradation of Alternative Biocides in the Aquatic Environment

  • Chapter

The ideal antifouling biocide, from a marine conservation perspective, should be degraded to compounds of lower toxicity in the environment to avoid impact on non-targed organisms. On the other hand, an effective biocide needs to have high toxicity to prevent fouling. These two suppositions are, to an extent, mutually exclusive. Nevertheless, some antifouling biocides released to the marine environment undergo hydrolysis, whilst others are degraded by sunlight in the photic zone.

Furthermore, a number of antifouling biocides are degraded by the many species of bacteria which inhabit water and sediment. Stable antifouling biocides are transported widely and can accumulate in sediment or are concentrated in aquatic organisms. Thus, in order to reduce the threat of magnification of residues, an ideal biocide should be degraded easily and rapidly to substances of lower toxicity, following their released into the aquatic environment. Information about their possible degradation mechanisms in the environment, whether by hydrolysis, sunlight or bacteria, is an important requirement in order to estimate the persistence of these compounds and to identify the factors that influence their behaviour. In this chapter, the degradation pathways and rated of representative alternative biocides in aquatic environment are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amey RL, Waldron C (2004) Efficacy and chemistry of BOROCIDE™P triphenylboron-pyridine, a non-metal anti-fouling biocide. Pro. InSAfE 234–243

    Google Scholar 

  • Bonnemoy F, Lavedrine B, Boulkamh A (2004) Influence of UV irradiation on the toxicity of phenylurea herbicides using Microtox® test. Chemosphere 54:1183–1187

    Article  CAS  Google Scholar 

  • Callow M E, Finlay J A (1995) A simple method to evaluated the potential for degradation of antifouling biocides. Biofouling 9:153–165

    Article  CAS  Google Scholar 

  • Callow M E, Willingham G L (1996) Degradation of antifouling biocides. Biofouling 10:239–249

    Article  CAS  Google Scholar 

  • Caux P-Y, Kent R A, Fan G T (1996) Environmental fate and effects of chlorothalonil: a Canadian perspective. Crit Rev Environ Sci Technol 26:45–93

    Article  CAS  Google Scholar 

  • Downing E (2000) http://www/odpr.ca.gov/docs/emon/pubs/fatememo/mabeb.pdf

  • Ellis P, Camper N (1982) Aerobic degradation of diuron by aquatic micro-organisms. J Environ Sci Health B 17:277–288

    Article  CAS  Google Scholar 

  • Grunnet K S, Dahllof I (2005) Environmental fate of the antifouling compound zinc pyrithione in seawater. Environ Toxicol Chem 24:3001–3006.

    Article  CAS  Google Scholar 

  • Hall L W Jr., Giddings J M, Solomon K R et al. (1999) An ecological risk assessment to the use of Irgarol 1051 as an algaecide for antifoulant paints. Crit Rev Toxicol 29:367–437

    CAS  Google Scholar 

  • Harino H, Kitano M, Mori et al. (2005) Degradation of antifouling booster biocides in water. J Mar Biol Assoc UK 85:33–38

    Article  CAS  Google Scholar 

  • Jacobsen A H, Willigham G L (2000) Sea-nine antifoulant: an environmentally acceptable alternative to organotin antifoulants. Sci Total Environ 258:103–110

    Article  Google Scholar 

  • Jacobsen A H, Mazza L S, Lawrence L J et al. (1993) Fate and an antifoulant in an aquatic environment, ACS symposium series No.522 Pesticides in Urban Environments: Fate and Significance, Racke K D and Leslie A R (eds). 127–138

    Google Scholar 

  • Lam K H, Lam M H W, Lam P K S et al. (2004) Identification and characterization of a new degradation product of Irgarol 1051 in mercuric chloride-catalyzed hydrolysis reaction and in coastal waters. Mar Pollut Bull 49:356–357

    Article  Google Scholar 

  • Lam K H, Cai Z, Lam M H W (2005) Identification of a new s-triazene species in the coastal waters originated from the use of Irgarol 1051 a booster biocide for marine antifouling coatings. Environ Pollut 136:221–230.

    Article  CAS  Google Scholar 

  • Liu D, Maguire R J, Lau Y L et al. (1997) Transformation of the new antifouling compound Irgarol 1051 by Phanerochaete chrysosporium. Water Res 31:2363–2369

    Article  CAS  Google Scholar 

  • Liu D, Pacepavicius G J, Maguire R J et al. (1999) Mercuric chloride-catalyzed hydrolysis of the new antifouling compound Irgarol 1051. Water Res 33:155–163

    Article  CAS  Google Scholar 

  • Maraldo K, Dahllöf I (2004) Indirect estimation of degradation time for zinc pyrithione and CuPT2 in seawater. Mar Pollut Bull 48:894–901

    Article  CAS  Google Scholar 

  • Okamura H, Aoyama I, Liu D et al. (1999) Photodegradation of Irgarol 1051 in water. J Environ Sci Health B34:225–238

    Article  Google Scholar 

  • Phinney J T, Bruland K W (1997) Trace metal exchange in solution by the fungicides ziram and maneb (dithiocarbametes) and subsequent uptake of lipophilic organic zinc, copper and lead complexes into phytoplankton cells. Environ Toxicol Chem 16:2046–2053

    Article  CAS  Google Scholar 

  • Sakka V A, Konstantinou I K, Albanis T A (2001) Photodegradation study of the antifouling booster biocide dichlofluanid in aqueous media by gas chromatographic techniques. J Chromatogr A 930: 135–144

    Article  Google Scholar 

  • Sakkas V A, Konstantinou I K, Albanis T A (2002a) Aquatic phototransformation stydy of the antifouling agent Sea-Nine 211: identification of byproducts and the reaction pathway by gas chromatography-mass spectroscopy. J Chromatographr A 959:215–227

    Article  CAS  Google Scholar 

  • Sakkas V A, Lambropoulou D A, Albanis T (2002b) Photochemical degradation study of irgarol 1051 in natural waters: influence of humic and fulvic substances on the reaction. J Photochem Photobiol A: Chem 147:135–141

    Article  CAS  Google Scholar 

  • Sakkas V A, Lambropoulou D A, Albanis T A (2002c) Study of chlorothalonil photodegradation in natural waters and in the presence of humic substances. Chemosphere 48:939–945

    Article  CAS  Google Scholar 

  • Sakkas V A, Shibata K, Yamaguchi Y et al. (2007) Aqueous phototransformation of zinc pyrithione degradation kinetics and byproduct identification by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr 1144:175–182

    Article  CAS  Google Scholar 

  • Seymour M S, Bailey D L (1981) Thin-layer chromatography of pyrithione. J Chromatogr 206: 301–310

    Article  CAS  Google Scholar 

  • Samanidou V, Fytianos K, Pfister G et al. (1988) Photochemical decomposition of carbamete pesticides in natural waters of Northern Greece. Sci Total Environ 76:85–92

    Article  CAS  Google Scholar 

  • Shade W D, Hurt S S, Jacobson A H et al. (1993) Ecological risk assessment of a novel marine antifoulant. EnvironToxicol Risk Assess 2:381–408

    Google Scholar 

  • Sharma V K, Aulakh J S, Malik A K et al. (2003) Thiram: degradation, applications and analytical methods. J Environ Monitor 5:717–723

    Article  CAS  Google Scholar 

  • Tanaka F S, Hoffer B L, Wien R G (1986) Photolysis of 3-(3,4-dichlorophenyl)-1, 1-dimethyl-urea(Diuron) in dilute aqueous solution. Toxicol Environ Chem 11:261–269

    Article  CAS  Google Scholar 

  • Thomas K (1999) Determination of the antifouling agent zinc pyrithione in water samples by copper chelate formation and high-performance liquid chromatography-atomospheric pressure chemical ionization mass spectrometry. J Chromatogr A 833:105–109

    Article  CAS  Google Scholar 

  • Thomas K V (2001) The environmental fate and behaviour of antifouling paint booster biocides: a review. Biofouling 17:73–86.

    Article  CAS  Google Scholar 

  • Thomas K, McHugh M, Waldock M (2002) Antifouling paint booster biocides in UK coastal waters: inputs, occurrence and environmental fate. Sci Total Environ 293:117–127

    Article  CAS  Google Scholar 

  • Thomas K V, McHugh M, Hilton M et al. (2003) Increased persistence of antifouling paint bio-cides when associated with paint particles. Environ Pollut 123:153–161

    Article  CAS  Google Scholar 

  • Thomas K V, Aldridge J, Dyer R et al. (2004) The occurrence, fate and effects of selected antifoul-ing paint booster biocides in UK docks, harbours and marinas. Pro. InSAfE 177–195

    Google Scholar 

  • Turley P A, Fenn R J, Ritter J C (2000) Pyrithiones as angifoulants:Environmental chemistry and preliminary risk assessment. Biofouling 15:175–182

    Article  CAS  Google Scholar 

  • Turley P A, Fenn R J, Ritter J C et al. (2005) Pyrithiones as antifoulant: Environmental fate and loss of toxicity. Biofouling 21:31–40

    Article  CAS  Google Scholar 

  • Walker W W, Cripe C R, Pritchard P H et al. (1988) Biological and biotic degradation of xeno-biotic compounds in in vitro estuarine water and sediment/water systems. Chemosphere 17: 2255–2271

    Article  CAS  Google Scholar 

  • Wessmahr K W, Sedlak D L (2000) Effect of metal complexation on the degradation of dithiocar-bamete fugicides. Environ Toxicol Chem 19:820–826

    Article  Google Scholar 

  • Yamaguchi Y, Kumakura A, Ishigami M et al. (2004) Spectrometric study on photodegradation of zinc and CuPT2s. Pro. InSAfE 228–233

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Harino, H., Langston, W.J. (2009). Degradation of Alternative Biocides in the Aquatic Environment. In: Arai, T., Harino, H., Ohji, M., Langston, W.J. (eds) Ecotoxicology of Antifouling Biocides. Springer, Tokyo. https://doi.org/10.1007/978-4-431-85709-9_23

Download citation

Publish with us

Policies and ethics