Toxic Interactions Between Tributyltin and Polychlorinated Biphenyls in Aquatic Organisms

  • Yuji Oshima
  • Kei Nakayama
  • Hano Takeshi
  • Sang Gyoon Kim
  • Yohei Shimasaki
  • Ik Joon Kang
  • Tsuneo Honjo

In recent years, discharges of anthropogenic chemicals to the environment have been increasing in association with industrial development. These chemicals and their degradation products are released to the environment, discharged into water, and may ultimately contaminate aquatic organisms. Polychlorinated biphenyls (PCBs) and tributyltin (TBT) are particularly ubiquitous pollutants.


White Perch Environ Toxicol Manila Clam Skipjack Tuna Japanese Medaka 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arrhenius A, Backhaus T, Gronvall F et al. (2006) Effects of three antifouling agents on algal communities and algal reproduction: mixture toxicity studies with TBT, Irgarol, and Sea-Nine. Arch Environ Contam Toxicol 50:335–345CrossRefGoogle Scholar
  2. Burton JE, Dorociak IR, Schwedler TE et al. (2002) Circulating lysozyme and hepatic CYP1A activities during a chronic dietary exposure to tributyltin (TBT) and 3,3′,4,4′, 5-pentachlorobiphenyl (PCB-126) mixtures in channel catfish, Ictalurus punctatus. J Toxicol Environ Health 65:589–602CrossRefGoogle Scholar
  3. Damstra T, Barlow S, Bergman A et al. (2002) Global assessment of the state-of-the-science of endocrine disruption. WHO/PCS/EDC/02.2. World Health Organization, Geneva, Switzerland.Google Scholar
  4. DeLong GT, Rice CD (1997) Tributyltin potentiates 3,3′,4,4′5-pentachlorobiphenyl- induced cytochrome P-4501A-related activity. J Toxicol Environ Health 51:131–148CrossRefGoogle Scholar
  5. Deneer JW, Sinnige TL, Seinen W et al. (1988) The joint acute toxicity to Daphnia magna of industrial organic chemicals at low concentrations. Aquat Toxicol 12:33–38CrossRefGoogle Scholar
  6. Edmunds JSG, McCarthy RA et al. (2000) Permanent and functional male-to-female sex reversal in d-rR strain medaka (Oryzias latipes) following embryo microinjection of o,p'-DDT. Environ Health Perspect 108:219–224CrossRefGoogle Scholar
  7. Fisk AT, Johnston TA (1998) Maternal transfer of organochlorines to eggs of walleye (Stizostedion vitreum) in Lake Manitoba and western Lake Superior. J Great Lakes Res 24:917–928Google Scholar
  8. Hano T, Oshima Y, Oe T, Kinoshita M et al. (2005) Quantitative bio-imaging analysis for evaluation of sexual differentiation in germ cells of olvas-GFP/ST-II YI medaka (Oryzias latipes) nanoinjected in ovo with ethinylestradiol. Environ Toxicol Chem 24:70–77CrossRefGoogle Scholar
  9. Hano T, Oshima Y, Kim SG et al. (2007) Tributyltin causes abnormal development in embryos of medaka, Oryzias latipes. Chemosphere 69:927–933CrossRefGoogle Scholar
  10. Hermens J, Broekhuyzen E, Canton H et al. (1985) Quantitative structure activity relationships and mixture toxicity studies of alcohols and chlorohydrocarbons: effects on growth of Daphnia magna. Aquat Toxicol 6:209–217CrossRefGoogle Scholar
  11. Horiguchi T, Kojima M, Hamada F et al. (2006) Impact of tributyltin and triphenyltin on ivory shell (Babylonia japonica) populations. Environ Health Perspect 114 Suppl 1:13–19.Google Scholar
  12. Ishaq R, Akerman G, Naf C et al. (1999) Organic pollutant characterization and toxicity testing of settling particulate matter by nanoinjection in sea trout (Salmo trutta) eggs. Environ Toxicol Chem 18:533–543CrossRefGoogle Scholar
  13. Inoue S, Oshima Y, Nagai K et al. (2004) Effect of maternal exposure to tributyltin on reproduction of the pearl oyster (Pinctada fucata martensii). Environ Toxicol Chem 23:1276–1281CrossRefGoogle Scholar
  14. Inoue S, Oshima Y, Usuki H et al. (2006) Effects of tributyltin maternal and/or waterborne expo sure on the embryonic development of the Manila clam, Ruditapes philippinarum. Chemosphere 63:881–888CrossRefGoogle Scholar
  15. Kannan K, Villeneuve DL, Blankenship AL et al. (1998) Interaction of tributyltin with 3,3′,4,4′ 5-pentachlorobiphenyl-induced ethoxyresorufin O-deethylase activity in rat hepatoma cells. J Toxicol Environ Health 55:373–384CrossRefGoogle Scholar
  16. Kim YC, Cooper KR (1998) Interactions of 2,3,7,8-tetrachlorodibenxo-p-dioxin (TCDD) and 3,3′,4,4′5-pentachlorobiphenyl (PCB 126) for producing lethal and sublethal effects in the Japanese medaka embryos and larvae. Chemosphere 36:409–418CrossRefGoogle Scholar
  17. Lyssimachou A, Jenssen BM, Arukwe A (2006) Brain cytochrome P450 aromatase gene isoforms and activity levels in atlantic salmon after waterborne exposure to nominal environmental concentrations of the pharmaceutical ethynylestradiol and antifoulant tributyltin. Toxicol Sci 91:82–92CrossRefGoogle Scholar
  18. Mac MJ, Schwartz TR, Edsall CC et al. (1993) Polychlorinated biphenyls in Great Lakes lake trout and their eggs: relations to survival and congener composition 1979–1988. J Great Lakes Res 19:752–765CrossRefGoogle Scholar
  19. McAllister BG, Kime DE (2003) Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio). Aquat Toxicol 65:309–316CrossRefGoogle Scholar
  20. Monosson E, Fleming WJ, Sullivan CV (1994) Effects of the planar PCB 3,3′, 4,43′-tetrachlorobiphenyl (TCB) on ovarian development, plasma levels of sex steroid hormones and vitellogenin, and progeny survival in the white perch (Morone americana). Aquat Toxicol 29:1–19CrossRefGoogle Scholar
  21. Morcillo Y, Janer G, O'Hara SC et al. (2004) Interaction of tributyltin with hepatic cytochrome P450 and uridine diphosphate-glucuronosyl transferase systems of fish: in vitro studies. Environ Toxicol Chem 23:990–996CrossRefGoogle Scholar
  22. Mortensen AS, Arukwe A (2007) Modulation of xenobiotic biotransformation system and hormonal responses in Atlantic salmon (Salmo salar) after exposure to tributyltin (TBT). Comp Biochem Physiol C Toxicol Pharmacol 145:431–441CrossRefGoogle Scholar
  23. Nakata H, Tanabe S, Tatsukawa R et al. (1997) Bioaccumulation profiles of polychlorinated biphenyls including coplanar congeners and possible toxicological implications in Baikal seal (Phoca sibirica). Environ Pollut 95:57–65CrossRefGoogle Scholar
  24. Nakata H, Sakai Y, Miyawaki T et al. (2003) Bioaccumulation and toxic potencies of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in tidal flat and coastal ecosystems of the Ariake Sea, Japan. Environ Sci Technol 37:3513–3521CrossRefGoogle Scholar
  25. Nakata H, Kannan K, Nasu T et al. (2006) Perfluorinated contaminants in sediments and aquatic organisms collected from shallow water and tidal flat areas of the Ariake Sea, Japan: environmental fate of perfluorooctane sulfonate in aquatic ecosystems. Environ Sci Technol 40:4916–4921CrossRefGoogle Scholar
  26. Nakayama K, Oshima Y, Hiramatsu K et al. (2004a) Alteration of general behavior of male medaka, Oryzias latipes, exposed to tributyltin and/or polychlorinated biphenyls. J Fac Agr Kyushu Univ 49:85–92Google Scholar
  27. Nakayama K, Oshima Y, Yamaguchi T et al. (2004b) Fertilization success and sexual behavior in male medaka, Oryzias latipes, exposed to tributyltin. Chemosphere 55:1331–1337CrossRefGoogle Scholar
  28. Nakayama K, Oshima Y, Hiramatsu K et al. (2005a) Effects of polychlorinated biphenyls on the schooling behavior of Japanese medaka (Oryzias latipes). Environ Toxicol Chem 24:2588–2593CrossRefGoogle Scholar
  29. Nakayama K, Oshima Y, Nagafuchi K et al. (2005b) Early–life-stage toxicity in offspring from exposed parent medaka, Oryzias latipes, to mixtures of tributyltin and polychlorinated biphenyls. Environ Toxicol Chem 24:591–596CrossRefGoogle Scholar
  30. Nakayama K, Oshima Y (2008) Adverse effects of tributyltin on reproduction of Japanese medaka, Oryzias latipes. Coast Mar Sci 32:67–76Google Scholar
  31. Nirmala K, Oshima Y, Lee R et al. (1999) Transgenerational toxicity of tributyltin and its combined effects with polychlorinated biphenyls on reproductive processes in Japanese medaka (Oryzias latipes). Environ Toxicol Chem 18:717–721CrossRefGoogle Scholar
  32. Nishikawa J, Mamiya S, Kanayama T et al. (2004) Involvement of the retinoid X receptor in the development of imposex caused by organotins in gastropods. Environ Sci Technol 38:6271–6276CrossRefGoogle Scholar
  33. Örn S, Andersson PL, Förlin L et al. (1998) The impact on reproduction of an orally administered mixture of selected PCBs in zebrafish (Danio rerio). Arch Environ Contam Toxicol 35:52–57CrossRefGoogle Scholar
  34. Papoulias DM, Noltie DB, Tillitt DE (2000a) An in vivo model fish system to test chemical effects on sexual differentiation and development: exposure to ethinylestradiol. Aquat Toxicol 48:37–50CrossRefGoogle Scholar
  35. Papoulias DM, Noltie DB, Tillitt DE (2000b) Effects of methyl testosterone exposure on sexual differentiation in medaka, Oryzias latipes. Mar Environ Res 50:181–184CrossRefGoogle Scholar
  36. Rice CD, Roszell LE (1998) Tributyltin modulates 3,3′,4,4′5-pentachlorobiphenyl (PCB-126)-induced hepatic CYP1A activity in channel catfish, Ictalurus punctatus. J Toxicol Environ Health 55:197–212CrossRefGoogle Scholar
  37. Santos MM, Micael J, Carvalho AP et al. (2006) Estrogens counteract the masculinizing effect of tributyltin in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 142:151–155CrossRefGoogle Scholar
  38. Schlenk D, Sapozhnikova Y, Baquirian JP et al. (2002) Predicting chemical contaminants in freshwater sediments through the use of historical biochemical endpoints in resident fish species. Environ Toxicol Chem 21:2138–2145CrossRefGoogle Scholar
  39. Schmidt K, Staaks GB, Pflugmacher S et al. (2005a) Impact of PCB mixture (Aroclor 1254) and TBT and a mixture of both on swimming behavior, body growth and enzymatic biotransformation activities (GST) of young carp (Cyprinus carpio). Aquat Toxicol 71:49–59CrossRefGoogle Scholar
  40. Schmidt K, Steinberg CEW, Staaks GBO (2005b) Influence of a xenobiotic mixture (PCB and TBT) compared to single substances on swimming behavior or reproduction of Daphnia magna. Acta Hydrochim Hydrobiol 33:287–300CrossRefGoogle Scholar
  41. Shimasaki Y, Kitano T, Oshima Y et al. (2003) Tributyltin causes masculinization in fish. Environ Toxicol Chem 22:141–144CrossRefGoogle Scholar
  42. Silva E, Rajapakse N, Kortenkamp A (2002) Something from “nothing”–eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36:1751–1756CrossRefGoogle Scholar
  43. Ueno D, Takahashi S, Tanaka H et al. (2003) Global pollution monitoring of PCBs and organochlorine pesticides using skipjack tuna as a bioindicator. Arch Environ Contam Toxicol 45:378–389CrossRefGoogle Scholar
  44. Ueno D, Inoue S, Takahashi S et al. (2004a) Global pollution monitoring of butyltin compounds using skipjack tuna as a bioindicator. Environ Pollut 127:1–12CrossRefGoogle Scholar
  45. Ueno D, Kajiwara N, Tanaka H et al. (2004b) Global pollution monitoring of polybrominated diphenyl ethers using skipjack tuna as a bioindicator. Environ Sci Technol 38:2312–2316CrossRefGoogle Scholar
  46. Walker M, Zabel E, Ackerman G et al. (1996) Fish egg injection as an alternative exposure route for early life stage toxicity studies: description of two unique methods. In Ostrander GK, ed, Techniques in Aquatic Toxicology. Lewis, New York, pp 41–72Google Scholar
  47. Wang C, Zhao Y, Zheng R et al. (2006) Effects of tributyltin, benzo[a]pyrene, and their mixture on antioxidant defense systems in Sebastiscus marmoratus. Ecotoxicol Environ Saf 65:381–387CrossRefGoogle Scholar
  48. Westerlund L, Billsson K, Andersson PL et al. (2000) Early life-stage mortality in zebrafish (Danio rerio) following maternal exposure to polychlorinated biphenyls and estrogen. Environ Toxicol Chem 19:1582–1588CrossRefGoogle Scholar
  49. Wilson PJ, Tillitt DE (1996) Rainbow trout embryotoxicity of a complex contaminant mixture extracted from Lake Michigan lake trout. Mar Environ Res 42:129–134CrossRefGoogle Scholar
  50. Yamada H, Takayanagi K, Tateishi M et al. (1997) Organotin compounds and polychlorinated biphenyls of livers in squid collected from coastal waters and open oceans. Environ Pollut 96:217–226CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Yuji Oshima
    • 1
  • Kei Nakayama
    • 2
  • Hano Takeshi
    • 1
  • Sang Gyoon Kim
    • 1
  • Yohei Shimasaki
    • 1
  • Ik Joon Kang
    • 1
  • Tsuneo Honjo
    • 1
  1. 1.Faculty of AgricultureGraduate School, Kyushu UniversityHigashi-kuJapan
  2. 2.Center for Marine Environmental Studies (CMES)Ehime UniversityMatsuyamaJapan

Personalised recommendations