Advertisement

A Molecular Model of the Human Prothrombinase Complex

  • Stephen J. Everse
  • Ty E. Adams
  • Kenneth G. Mann

Abstract

Within the prothrombinase complex, the cofactor protein factor Va increases the catalytic efficiency of the serine protease factor Xa in the presence of calcium ions on a phospholipid membrane surface. The precise details leading to the alteration in catalytic activity of factor Xa have been the center of debate for decades. Our recent crystal structure of activated protein C-inactivated bovine factor Va (factor Vai) revealed a domain organization unlike any previous model of either factor Va or factor Villa. Based on this structure, several homology models of human factor Va have been built along with models of human factor Xa (based on the porcine factor IXa structure). It is obvious that a deeper understanding of the interaction of the various components in the prothrombinase complex will eventually lead to elucidation of the precise mechanism of cofactor function.

Keywords

Factor Versus Protease Domain Blood Coagulation Factor Prothrombinase Complex EGF2 Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nesheim ME, Taswell JB, Mann KG (1979) The contribution of bovine factor V and factor Va to the activity of prothrombinase. J Biol Chem 254:10952–10962PubMedGoogle Scholar
  2. 2.
    Rosing J, Tans G, Grovers Riemslag JW, et al (1980) The role of phospholipids and factor Va in the prothrombinase complex. J Biol Chem 255:274PubMedGoogle Scholar
  3. 3.
    Mann KG (1984) Membrane-bound enzyme complexes in blood coagulation. Prog Haemost Thromb 7:1–23CrossRefGoogle Scholar
  4. 4.
    Kane W, Davie EW (1988) Blood coagulation factors V and VIII: structural and functional similarities and their relationships to hemorrhagic and thrombotic disorders. Blood 71:539–555PubMedGoogle Scholar
  5. 5.
    Krishnaswamy S, Jones KC, Mann KG (1988) Prothrombinase complex assembly: kinetic mechanism of enzyme assembly on phospholipid vesicles. J Biol Chem 263:3823–3834PubMedGoogle Scholar
  6. 6.
    Krishnaswamy S (1990) Prothrombinase complex assembly: contributions of protein-protein and protein-membrane interactions toward complex formation. J Biol Chem 265:3708–3718PubMedGoogle Scholar
  7. 7.
    Mann KG, Kalafatis M (2003) Factor V: a combination of Dr. Jekyll and Mr. Hyde. Blood 101:20–30PubMedCrossRefGoogle Scholar
  8. 8.
    Nelsestuen GL, Ostrowski BG (1999) Membrane association with multiple calcium ions: vitamin-K-dependent proteins, annexins and pentraxins. Curr Opin Struct Biol 9:433–437PubMedCrossRefGoogle Scholar
  9. 9.
    Padmanabhan K, Padmanabhan KP, Tulinsky A, et al (1993) Structure of human Des (1–45) factor Xa at 2.2 a resolution. J Mol Biol 232:947–966PubMedCrossRefGoogle Scholar
  10. 10.
    Brandstetter H, Kuhne A, Bode W, et al (1996) X-ray structure of active site-inhibited clotting factor Xa. implications for drug design and substrate recognition. J Biol Chem 271:29988–29992PubMedCrossRefGoogle Scholar
  11. 11.
    Kamata K, Kawamoto H, Honma T, et al (1998) Structural basis for chemical inhibition of human blood coagulation factor Xa. Proc Natl Acad Sci U S A 95:6630–6635PubMedCrossRefGoogle Scholar
  12. 12.
    Lim TK, Bloomfield VA, Nelsestuen GL (1977) Structure of the prothrombin-and blood clotting factor X-membrane complexes. Biochemistry 16:4177–4181PubMedCrossRefGoogle Scholar
  13. 13.
    Husten EJ, Esmon CT, Johnson AE (1987) The active site of blood coagulation factor Xa its distance from the phospholipid surface and its conformational sensitivity to components of the prothrombinase complex. J Biol Chem 262:12953–12961PubMedGoogle Scholar
  14. 14.
    Nesheim ME, Myrmel KH, Hibbard LS, et al (1979) Isolation and characterization of single chain bovine factor V. J Biol Chem 254:508–517PubMedGoogle Scholar
  15. 15.
    Dahlback B (1980) Human coagulation factor V purification and thrombin-catalyzed activation. J Clin Invest 66:583–591PubMedCrossRefGoogle Scholar
  16. 16.
    Tracy PB, Eide LL, Bowie EJ, et al (1982) Radioimmunoassay of factor V in human plasma and platelets. Blood 60:59–63PubMedGoogle Scholar
  17. 17.
    Esmon CT (1979) The subunit structure of thrombin-activated factor V isolation of activated factor V, separation of subunits, and reconstitution of biological activity. J Bioll Chem 254:964–973Google Scholar
  18. 18.
    Mann KG, Lawler CM, Vehar GA, et al (1984) Coagulation factor V contains copper ion. J Biol Chem 259:12949–12951PubMedGoogle Scholar
  19. 19.
    Kane WH, Davie EW (1986) Cloning of a cDNA coding for human factor V, a blood coagulation factor homologous to factor VIII and ceruloplasmin. Proc Natl Acad Sci U S A 83:6800–6804PubMedCrossRefGoogle Scholar
  20. 20.
    Jenny RJ, Pittman DD, Toole JJ, et al (1987) Complete cDNA and derived amino acid sequence of human factor V. Proc Natl Acad Sciences U S A 84:4846–4850CrossRefGoogle Scholar
  21. 21.
    Hortin GL (1990) Sulfation of tyrosine residues in coagulation factor V. Blood 76:946–952PubMedGoogle Scholar
  22. 22.
    Cripe LD, Moore KD, Kane WH (1992) Structure of the gene for human coagulation factor V. Biochemistry 31:3777–3785PubMedCrossRefGoogle Scholar
  23. 23.
    Guinto ER, Esmon CT, Mann KG, et al (1992) The complete cDNA sequence of bovine coagulation factor V. J Biol Chem 267:2971–2978PubMedGoogle Scholar
  24. 24.
    Kalafatis M, Rand MD, Jenny RJ, et al (1993) Phosphorylation of factor Va and factor Villa by activated platelets. Blood 81:704–719PubMedGoogle Scholar
  25. 25.
    Rand MD, Kalafatis M, Mann KG (1994) Platelet coagulation factor Va: the major secretory platelet phosphoprotein. Blood 83:2180–2190PubMedGoogle Scholar
  26. 26.
    Nesheim ME, Foster WB, Hewick R, et al (1984) Characterization of factor V activation intermediates. J Biol Chem 259:3187–3196PubMedGoogle Scholar
  27. 27.
    Krishnaswamy S, Russell GD, Mann KG (1989) The reassociation of factor Va from its isolated subunits. J Biol Chem 264:3160–3168PubMedGoogle Scholar
  28. 28.
    Kisiel W, Canfield WM, Ericsson LH (1977) Anticoagulant properties of bovine plasma protein C following activation by thrombin. Biochemistry 16:5824–5831PubMedCrossRefGoogle Scholar
  29. 29.
    Kalafatis M, Rand MD, Mann KG (1994) The mechanism of inactivation of human factor V and human factor Va by activated protein C. J Biol Chem 269:31869–31880PubMedGoogle Scholar
  30. 30.
    Kalafatis M, Bertina RM, Rand MD, et al (1995) Characterization of the molecular defect in factor VR506Q. J Biol Chem 270:4053–4057PubMedCrossRefGoogle Scholar
  31. 31.
    Nicolaes GAF, Tans G, Thomassen MCLGD, et al (1995) Peptide bond cleavages and loss of functional activity during inactivation of factor Va and factor Va R506Q by activated protein C. J Biol Chem 270:21158–21166PubMedCrossRefGoogle Scholar
  32. 32.
    Rosing J, Hoekema L, Nicolaes GAF (1995) Effects of protein S and factor Xa on peptide bond cleavages during inactivation of factor Va and factor Va R506Q by activated protein C. J Biol Chem 270:27852–27858PubMedCrossRefGoogle Scholar
  33. 33.
    Egan JO, Kalafatis M, Mann KG (1997) The effect of Arg306→Ala and Arg506→Gln substitutions in the inactivation of recombinant human factor Va by activated protein C and protein S. Protein Sci 6:2016–2027PubMedGoogle Scholar
  34. 34.
    Hockin MF, Kalafatis M, Shatos M, et al (1997) Protein C activation and factor Va inactivation on human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol 17:2765–2775PubMedGoogle Scholar
  35. 35.
    Dahlback B, Villoutreix BO (2003) Molecular recognition in the protein C anticoagulant pathway. J Thromb Haemost 1:1525–1534PubMedCrossRefGoogle Scholar
  36. 36.
    Nesheim ME, Canfield WM, Kisiel W (1982) Studies of the capacity of factor Xa to protect factor Va from inactivation by activated protein C. J Biol Chem 257:1443–1447PubMedGoogle Scholar
  37. 37.
    Mann KG, Hockin M, Begin KJ, et al (1997) Activated protein C cleavage of factor Va leads to dissociation of the A2 domain. J Biol Chem 272:20678–20683PubMedCrossRefGoogle Scholar
  38. 38.
    Krishnaswamy S, Williams EB, Mann KG (1986) The binding of activated protein C to factors V and Va. J Biol Chem 261:9684–9693PubMedGoogle Scholar
  39. 39.
    Solymoss S, Tucker MM, Tracy PB (1988) Kinetics of inactivation of membrane-bound factor Va by activated protein C: protein S modulates factor Xa protection. J Biol Chem 263:14884–14890PubMedGoogle Scholar
  40. 40.
    Kalafatis M, Mann KG (1993) Role of the membrane in the inactivation of factor Va by activated protein C. J Biol Chem 268:27246–27257PubMedGoogle Scholar
  41. 41.
    Hockin MF, Cawthern KM, Kalafatis M (1999) A model describing the inactivation of factor Va by APC: bond cleavage, fragment dissociation, and product inhibition. Biochemistry 38:6918–6934PubMedCrossRefGoogle Scholar
  42. 42.
    Van der Neut Kolfschoten M, Dirven RJ, Vos HL, et al (2004) Factor Va is inactivated by activated protein C in the absence of cleavage sites at Arg-306, Arg-506, and Arg-679. J Biol Chem 279:6567–6575PubMedCrossRefGoogle Scholar
  43. 43.
    Poole S, Firtel R, Lamar E, et al (1981) Sequence and expression of the discoidin I gene family in Dictyostelium discoideum. J Mol Biol 153:273–289PubMedCrossRefGoogle Scholar
  44. 44.
    Bartles JR, Galvin NJ, Frazier WA (1982) Discoidin. I. Membrane interactions. II. Discoidin I binds to and agglutinates negatively charged phospholipid vesicles. Biochim Biophys Acta 1982:4189Google Scholar
  45. 45.
    Macedo-Ribeiro S, Bode W, Huber R, et al (1999) Crystal structures of the membrane-binding C2 domain of human coagulation factor V. Nature 402:434–439PubMedCrossRefGoogle Scholar
  46. 46.
    Adams TE, Hockin MF, Mann KG, et al (2004) The crystal structure of activated protein C-inactivated bovine factor Va: implications for cofactor function. Proc Natl Acad Sci U S A 101:8918–8923PubMedCrossRefGoogle Scholar
  47. 47.
    Kim SW, Quinn-Allen MA, Camp JT, et al (2000) Identification of functionally important amino acid residues within the C2-domain of human factor V using alaninescanning mutagenesis. Biochemistry 39:1951–1958PubMedCrossRefGoogle Scholar
  48. 48.
    Nicolaes GA, Villoutreix BO, Dahlback B (2000) Mutations in a potential phospholipid binding loop in the C2 domain of factor V affecting the assembly of the prothrombinase complex. Blood Coagul Fibrinolysis 11:89–100PubMedCrossRefGoogle Scholar
  49. 49.
    Izumi T, Kim SW, Greist A, et al (2001) Fine mapping of inhibitory anti-factor V antibodies using factor V C2 domain mutants: identification of two antigenic epitopes involved in phospholipid binding. Thromb Haemost 85:1048–1054PubMedGoogle Scholar
  50. 50.
    Gilbert GE, Kaufman RJ, Arena AA (2002) Four hydrophobic amino acids of the factor VIII C2 domain are constituents of both the membrane-binding and von Willebrand factor-binding motifs. J Biol Chem 277:6374–6381PubMedCrossRefGoogle Scholar
  51. 51.
    Peng W, Quinn-Allen MA, Kim SW, et al (2004) Trp2063 and Trp2064 in the factor Va C2 domain are required for high-affinity binding to phospholipid membranes but not for assembly of the prothrombinase complex. Biochemistry 43:4385–4393PubMedCrossRefGoogle Scholar
  52. 52.
    Mollica L, Fraternali F, Musco G (2006) Interactions of the C2 domain of human factor V with a model membrane. Proteins 64:363–375PubMedCrossRefGoogle Scholar
  53. 53.
    Mann KG, Nesheim ME, Tracy PB (1981) Molecular weight of undegraded plasma factor V. Biochemistry 20:28–33PubMedCrossRefGoogle Scholar
  54. 54.
    Fowler WE, Fay PJ, Arvan DS, et al (1990) Electron microscopy of human factor V and factor VIII: correlation of morphology with domain structure and localization of factor V activation fragments. Proc Natl Acad Sci U S A 87:7648–7652PubMedCrossRefGoogle Scholar
  55. 55.
    Mosesson MW, Church WR, DiOrio JP, et al (1990) Structural model of factors V and Va based on scanning transmission electron microscope images and mass analysis. J Biol Chem 265:8863–8868PubMedGoogle Scholar
  56. 56.
    Stoylova S, Mann KG, Brisson A (1994) Structure of membrane-bound human factor Va. FEBS Lett 351:330–334PubMedCrossRefGoogle Scholar
  57. 57.
    Toso R, Camire RM (2004) Removal of B-domain sequences from factor V rather than specific proteolysis underlies the mechanism by which cofactor function is realized. J Biol Chem 279:21643–21650PubMedCrossRefGoogle Scholar
  58. 58.
    Saleh M, Peng W, Quinn-Allen MA, et al (2004) The factor V C1 domain is involved in membrane binding: identification of functionally important amino acid residues within the C1 domain of factor V using alanine scanning mutagenesis. Thromb Haemost 91:16–27PubMedGoogle Scholar
  59. 59.
    Pemberton S, Lindley P, Zaitsev V, et al (1997) A molecular model for the triplicated A domains of human factor VIII based on the crystal structure of human ceruloplasmin. Blood 89:2413–2421PubMedGoogle Scholar
  60. 60.
    Villoutreix BO, Dahlback B (1998) Structural investigation of the A domains of human blood coagulation factor V by molecular modeling. Protein Sci 7:1317–1325PubMedGoogle Scholar
  61. 61.
    Pratt KP, Shen BW, Takeshima K, et al (1999) Structure of the C2 domain of human factor VIII at 1.5Å resolution. Nature 402:439–442PubMedCrossRefGoogle Scholar
  62. 62.
    Pellequer JL, Gale AJ, Getzoff ED (2000) Three-dimensional model of coagulation factor Va bound to activated protein C. Thromb Haemost 84:849–857PubMedGoogle Scholar
  63. 63.
    Stoilova-McPhie S, Villoutreix BO, Mertens K, et al (2002) 3-Dimensional structure of membrane-bound coagulation factor VIII: modeling of the factor VIII heterodimer within a 3-dimensional density map derived by electron crystallography. Blood 99:1215–1223PubMedCrossRefGoogle Scholar
  64. 64.
    Gale AJ, Yegneswaren S, Xu X, et al (2007) Characterization of a factor Xa binding site on factor Va near Arg506 APC cleavage site. J Biol Chem 282:21848–21855PubMedCrossRefGoogle Scholar
  65. 65.
    Orban T, Kalafatis M, Gogonea V (2005) Completed three-dimensional model of human coagulation factor Va: molecular dynamics simulations and structural analyses. Biochemistry 44:13082–13090PubMedCrossRefGoogle Scholar
  66. 66.
    Kalafatis M, Beck DO, Mann KG (2003) Structural requirements for expression of factor Va activity. J Biol Chem 278:33550–33561PubMedCrossRefGoogle Scholar
  67. 67.
    Beck DO, Bukys MA, Singh LS, et al (2004) The contribution of amino acid region ASP695-TYR698 of factor V to procofactor activation and factor Va function. J Biol Chem 279:3084–3095PubMedCrossRefGoogle Scholar
  68. 68.
    Higgins DL, Mann KG (1983) The interaction of bovine factor V and factor V derived peptides wiht phospholipid vesicles. J Biol Chem 258:6503–6508PubMedGoogle Scholar
  69. 69.
    Krishnaswamy S, Mann KG (1988) The binding of factor Va to phospholipid vesicles. J Biol Chem 263:5714–5723PubMedGoogle Scholar
  70. 70.
    Kalafatis M, Rand MD, Mann KG (1994) Factor Va-membrane interaction is mediated by two regions located on the light chain of the cofactor. Biochemistry 33:486–493PubMedCrossRefGoogle Scholar
  71. 71.
    Ortel TL, Quinn-Allen MA, Keller FG, et al (1994) Localization of functionally important epitopes within the second C-type domain of coagulation factor V using recombinant chimeras. J Biol Chem 269:15898–15905PubMedGoogle Scholar
  72. 72.
    McDonald JF, Shah AM, Schwalbe RA, et al (1997) Comparison of naturally occurring vitamin K-dependent proteins: correlation of amino acid sequences and membrane binding properties suggests a membrane contact site. Biochemistry 36:5120–5127PubMedCrossRefGoogle Scholar
  73. 73.
    Heeb MJ, Kojima Y, Hackeng TM, et al (1996) Binding sites for blood coagulation factor Xa and protein S involving residues 493-506 in factor Va. Protein Sci 5:1883–1889PubMedCrossRefGoogle Scholar
  74. 74.
    Kojima Y, Heeb MJ, Gale AJ, et al (1998) Binding site for blood coagulation factor Xa involving residues 311–325 in factor Va. J Biol Chem 273:14900–14905PubMedCrossRefGoogle Scholar
  75. 75.
    Kalafatis M, Beck DO (2002) Identification of a binding site for blood coagulation factor Xa on the heavy chain of factor Va: amino acid residues 323–331 of factor V represent an interactive site for activated factor X. Biochemistry 41:12715–12728PubMedCrossRefGoogle Scholar
  76. 76.
    Singh LS, Bukys MA, Beck DO, et al (2003) Amino acids Glu323, Tyr324, Glu330, and Val331 of factor Va heavy chain are essential for expression of cofactor activity. J Biol Chem 278:28335–28345PubMedCrossRefGoogle Scholar
  77. 77.
    Steen M, Villoutreix BO, Norstrom EA, et al (2002) Defining the factor Xa-binding site on factor Va by site-directed glycosylation. J Biol Chem 277:50022–50029PubMedCrossRefGoogle Scholar
  78. 78.
    Chattopadhyay G, James HL, Fair DS (1992) Molecular recognition sites on factor Xa which participate in the prothrombin complex. J Biol Chem 267:12323–12329PubMedGoogle Scholar
  79. 79.
    Yegneswaran S, Mesters RM, Griffin JH (2003) Identification of distinct sequences in human blood coagulation factor Xa and prothrombin essential for substrate and cofactor recognition in the prothrombinase complex. J Biol Chem 278:33312–33318PubMedCrossRefGoogle Scholar
  80. 80.
    Rezaie AR (2000) Identification of basic residues in the heparin-binding exosite of factor Xa critical for heparin and factor Va binding. J Biol Chem 275:3320–3327PubMedCrossRefGoogle Scholar
  81. 81.
    Rudolph AE, Porche-Sorbet R, Miletich JP (2000) Substitution of asparagine for arginine 347 of recombinant factor Xa markedly reduces factor Va binding. Biochemistry 39:2861–2867PubMedCrossRefGoogle Scholar
  82. 82.
    Rudolph AE, Porche-Sorbet R, Miletich JP (2001) Definition of a factor Va binding site in factor Xa. J Biol Chem 276:5123–5128PubMedCrossRefGoogle Scholar
  83. 83.
    Rezaie AR, Kittur FS (2004) The critical role of the 185-189-loop in the factor Xa interaction with Na+ and factor Va in the prothrombinase complex. J Biol Chem 279:48262–48269PubMedCrossRefGoogle Scholar
  84. 84.
    Guinto ER, Esmon CT (1984) Loss of prothrombin and of factor Xa-factor Va interactions upon inactivation of factor Va. J Biol Chem 259:13986–13992PubMedGoogle Scholar
  85. 85.
    Bakker HM, Tans G, Thomassen MC, et al (1994) Functional properties of human factor Va lacking the Asp683-Arg709 domain of the heavy chain. J Biol Chem 269:20662–20667PubMedGoogle Scholar
  86. 86.
    Dharmawardana KR, Bock PE (1998) Demonstration of exosite I-dependent interactions of thrombin with human factor V and factor Va involving the factor Va heavy chain: analysis by affinity chromatography employing a novel method for active-site-selective immobilization of serine proteinases. Biochemistry 37:13143–13152PubMedCrossRefGoogle Scholar
  87. 87.
    Anderson PJ, Nesset A, Dharmawardana KR (2000) Role of proexosite I in factor Va-dependent substrate interactions of prothrombin activation. J Biol Chem 275:16435–16442PubMedCrossRefGoogle Scholar
  88. 88.
    Wilkens M, Krishnaswamy S (2002) The contribution of factor Xa to exosite-dependent substrate recognition by prothrombinase. J Biol Chem 277:9366–9374PubMedCrossRefGoogle Scholar
  89. 89.
    Bajaj SP (1999) Region of factor IXa protease domain that interacts with factor VIIIa: analysis of select hemophilia B mutants. Thromb Haemost 82:218–225PubMedGoogle Scholar
  90. 90.
    Mathur A, Bajaj SP (1999) Protease and EGF1 domains of factor IXa play distinct roles in binding to factor VIIIa: importance of helix 330 (helix 162 in chymotrypsin) of protease domain of factor IXa in its interaction with factor VIIIa. J Biol Chem 274:18477–18486PubMedCrossRefGoogle Scholar
  91. 91.
    Bajaj SP, Schmidt AE, Mathur A, et al (2001) Factor IXa:factor VIIIa interaction: helix 330–338 of factor IXa interacts with residues 558–565 and spatially adjacent regions of the a2 subunit of factor VIIIa. J Biol Chem 276:16302–16309PubMedCrossRefGoogle Scholar
  92. 92.
    Pryzdial ELG, Mann KG (1991) The association of coagulation factor Xa and factor Va. J Biol Chem 266:8969–8977PubMedGoogle Scholar
  93. 93.
    Krishnaswamy S, Mann KG, Nesheim ME (1986) The prothrombinase-catalyzed activation of prothrombin proceeds through the intermediate meziothrombin in an ordered, sequential reaction. J Biol Chem 261:8977–8984PubMedGoogle Scholar
  94. 94.
    Kalafatis M, Xue J, Lawler CM, et al (1994) Contribution of the heavy and light chains of factor Va to the interaction with factor Xa. Biochemistry 33:6538–6545PubMedCrossRefGoogle Scholar
  95. 95.
    Pusey ML, Nelsestuen GL (1984) Membrane binding properties of blood coagulation factor V and derived peptides. Biochemistry 23:6202–6210PubMedCrossRefGoogle Scholar
  96. 96.
    Lecompte MF, Bouix G, Mann KG (1994) Electrostatic and hydrophobic interactions are involved in factor Va binding to membranes containing acidic phospholipids. J Biol Chem 269:1905–1910PubMedGoogle Scholar
  97. 97.
    Ortel TL, Devore-Carter D, Quinn-Allen MA, et al (1992) Deletion analysis of recombinant human factor V: evidence for a phosphatidylserine binding site in the second C-type domain. J Biol Chem 267:4189–4198PubMedGoogle Scholar
  98. 98.
    Comfurius P, Smeets EF, Willems GM, et al (1994) Assembly of the prothrombinase complex on lipid vesicles depends on the stereochemical configuration of the polar headgroup of phosphatidylserine. Biochemistry 33:10319–10324PubMedCrossRefGoogle Scholar
  99. 99.
    Nelsestuen GL, Broderius M (1977) Interaction of prothrombin and blood clotting factor X with membranes of varying composition. Biochemistry 16:4172–4177PubMedCrossRefGoogle Scholar
  100. 100.
    McDuffie FC, Giffin C, Niedringhaus R, et al (1979) Prothrombin, thrombin and prothrombin fragments in plasma of normal individuals and of patients with laboratory evidence of disseminated intravascular coagulation. Thromb Res 16: 759–773PubMedCrossRefGoogle Scholar
  101. 101.
    Krishnaswamy S, Church WR, Nesheim ME, et al (1987) Activation of human prothrombin by human prothrombinase: influence of factor Va on the reaction mechanism. J Biol Chem 262:3291–3299PubMedGoogle Scholar
  102. 102.
    Boskovic DS, Giles AR, Nesheim ME (1990) Studies of the role of factor Va in the factor Xa-catalyzed activation of prothrombin, fragment 1.2-prethrombin-2, and dansyl-L-glutamyl-glycyl-L-arginine-meizothrombin in the absence of phospholipid. J Biol Chem 265:10497–10505PubMedGoogle Scholar
  103. 103.
    Nesheim M, Kettner C, Shaw E, et al (1981) Cofactor dependence of factor Xa incorporation into the prothrombinase complex. J Biol Chem 256:6537–6540PubMedGoogle Scholar
  104. 104.
    Rezaie AR, Esmon CT (1995) Contribution of residue 192 in factor Xa to enzyme specificity and function. J Biol Chem 270:16176–16181PubMedCrossRefGoogle Scholar
  105. 105.
    Krishnaswamy S, Betz A (1997) Exosites determine macromolecular substrate recognition by prothrombinase. Biochemistry 36:12080–12086PubMedCrossRefGoogle Scholar
  106. 106.
    Betz A, Krishnaswamy S (1998) Regions remote from the site of cleavage determine macromolecular substrate recognition by the prothrombinase complex. J Biol Chem 273:10709–10718PubMedCrossRefGoogle Scholar
  107. 107.
    Autin L, Steen M, Dahlback B, et al (2006) Proposed structural models of the prothrombinase (FXa-FVa) complex. Proteins 63:440–450PubMedCrossRefGoogle Scholar
  108. 108.
    Pellequer JL, Gale AJ, Griffin JH, et al (1998) Homology models of the C domains of blood coagulation factors V and VIII: a proposed membrane binding mode for FV and FVIII C2 domains. Blood Cells Mol Dis 24:448–461PubMedCrossRefGoogle Scholar
  109. 109.
    Brandstetter H, Bauer M, Huber R, et al (1995) X-ray structure of clotting factor IXa: active site and module structure related to Xase activity and hemophilia B. Proc Natl Acad Sci U S A 92:9796–9800PubMedCrossRefGoogle Scholar
  110. 110.
    Bianchini EP, Pike RN, Le Bonniec BF (2004) The elusive role of the potential factor X cation-binding exosite-1 in substrate and inhibitor interactions. J Biol Chem 279:3671–3679PubMedCrossRefGoogle Scholar
  111. 111.
    Walker RK, Krishnaswamy S (1993) The influence of factor Va on the active site of factor Xa. J Biol Chem 268:13920–13929PubMedGoogle Scholar
  112. 112.
    Mann KG, Jenny RJ, Krishnaswamy S (1988) Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Annu Rev Biochem 57:915–956PubMedCrossRefGoogle Scholar
  113. 113.
    Davie EW, Fujikawa K, Kisiel W (1991) The coagulation cascade: initiation, maintenance and regulation. Biochemistry 30:10363–10370PubMedCrossRefGoogle Scholar
  114. 114.
    Baugh RJ, Dickinson CD, Ruf W, et al (2000) Exosite interactions determine the affinity of factor X for the extrinsic Xase complex. J Biol Chem 275:28826–28833PubMedCrossRefGoogle Scholar
  115. 115.
    Boskovic DS, Krishnaswamy S (2000) Exosite binding tethers the macromolecular substrate to the prothrombinase complex and directs cleavage at two spatially distinct sites. J Biol Chem 275:38561–38570PubMedCrossRefGoogle Scholar
  116. 116.
    Chen L, Yang L, Rezaie AR (2003) Proexosite-1 on prothrombin is a factor Va-dependent recognition site for the prothrombinase complex. J Biol Chem 278:27564–27569PubMedCrossRefGoogle Scholar
  117. 117.
    Boskovic DS, Troxler T, Krishnaswamy S (2004) Active site-independent recognition of substrates and product by bovine prothrombinase: a fluorescence resonance energy transfer study. J Biol Chem 279:20786–20793PubMedCrossRefGoogle Scholar
  118. 118.
    Krishnaswamy S (2005) Exosite-driven substrate specificity and function in coagulation. J Thromb Haemost 3:54–67PubMedCrossRefGoogle Scholar
  119. 119.
    Wong MY, Gurr JA, Walsh PN (1999) The second epidermal growth factor-like domain of human factor IXa mediates factor IXa binding to platelets and assembly of the factor X activating complex. Biochemistry 38:8948–8960PubMedCrossRefGoogle Scholar
  120. 120.
    Wilkinson FH, Ahmad SS, Walsh PN (2002) The factor IXa second epidermal growth factor (EGF2) domain mediates platelet binding and assembly of the factor X activating complex. J Biol Chem 277:5734–5741PubMedCrossRefGoogle Scholar
  121. 121.
    Hertzberg MS, Ben-Tal O, Furie B, et al (1992) Construction, expression, and characterization of a chimera of factor IX and factor X: the role of the second epidermal growth factor domain and serine protease domain in factor Va binding. J Biol Chem 267:14759–14766PubMedGoogle Scholar
  122. 122.
    Thiec F, Cherel G, Christophe OD (2003) Role of the Gla and first epidermal growth factor-like domains of factor X in the prothrombinase and tissue factor-factor VIIa complexes. J Biol Chem 278:10393–10399PubMedCrossRefGoogle Scholar
  123. 123.
    Krishnaswamy S (1990) Prothrombinase complex assembly: contributions of protein-protein and protein-membrane interactions toward complex formation. J Biol Chem 265:3708–3718PubMedGoogle Scholar
  124. 124.
    Steen M, Dahlback B (2002) Thrombin-mediated proteolysis of factor V resulting in gradual B-domain release and exposure of the factor Xa-binding site. J Biol Chem 277:38424–38430PubMedCrossRefGoogle Scholar
  125. 125.
    Brufatto N, Nesheim ME (2003) Analysis of the kinetics of prothrombin activation and evidence that two equilibrating forms of prothrombinase are involved in the process. J Biol Chem 278:6755–6764PubMedCrossRefGoogle Scholar
  126. 126.
    Mann KG, Nesheim ME, Church WR, et al (1990) Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 76:1–16PubMedGoogle Scholar
  127. 127.
    Nesheim M, Eid S, Mann KG (1981) Assembly of the prothrombinase complex in the absence of prothrombin. J Biol Chem 29:9874–9882Google Scholar
  128. 128.
    Manithody C, Rezaie AR (2005) Functional mapping of charged residues of the 82–116 sequence in factor Xa: evidence that lysine 96 is a factor Va independent recognition site for prothrombin in the prothrombinase complex. Biochemistry 44:10063–10070PubMedCrossRefGoogle Scholar
  129. 129.
    Toso R, Camire RM (2006) Role of hirudin-like factor Va heavy chain sequences in prothrombinase function. J Biol Chem 281:8773–8779PubMedCrossRefGoogle Scholar
  130. 130.
    Blostein MD, Rigby AC, Jacobs M, et al (2000) The Gla domain of human prothrombin has a binding site for factor Va. J Biol Chem 275:38120–38126PubMedCrossRefGoogle Scholar
  131. 131.
    Esmon CT, Jackson CM (1974) The conversion of prothrombin to thrombin. IV. The function of the fragment 2 region during activation in the presence of factor. J Biol Chem 25:7791–7797Google Scholar
  132. 132.
    Bajaj SP, Butkowski RJ, Mann KG (1975) Prothrombin fragments: Ca2+ binding and activation kinetics. J Biol Chem 250:2150–2156PubMedGoogle Scholar
  133. 133.
    Kotkow KJ, Deitcher SR, Furie B, et al (1995) The second kringle domain of prothrombin promotes factor Va mediated prothrombin activation by prothrombinase. J Biol Chem 270:4551–4557PubMedCrossRefGoogle Scholar
  134. 134.
    Deguchi H, Takeya H, Gabazza EC, et al (1997) Prothrombin kringle 1 domain interacts with factor Va during the assembly of prothrombinase complex. Biochem J 321 (Pt3):729–735PubMedGoogle Scholar
  135. 135.
    Anderson PJ, Nesset A, Dharmawardana KR, et al (2000) Characterization of proexosite I on prothrombin. J Biol Chem 275:16428–16434PubMedCrossRefGoogle Scholar
  136. 136.
    Lecompte MF, Krishnaswamy S, Mann KG, et al (1987) Membrane penetration of bovine factor V and Va detected by labeling with 5-iodonaphthalene-l-azide. J Biol Chem 262:1935PubMedGoogle Scholar
  137. 137.
    Krishnaswamy S, Mann KG (1988) The binding of factor Va to phospholipid vesicles. J Biol Chem 263:57154–5723Google Scholar
  138. 138.
    Kalafatis M, Jenny RJ, Mann KG (1990) Identification and characterization of a phospholipid-binding site of bovine factor Va. J Biol Chem 265:21580–21589PubMedGoogle Scholar
  139. 139.
    Srivastava A, Quinn-Allen MA, Kim SW, et al (2001) Soluble phosphatidylserine binds to a single identified site in the C2 domain of human factor Va. Biochemistry 40:8246–8255PubMedCrossRefGoogle Scholar
  140. 140.
    Zhai X, Srivastava A, Drummond DC, et al (2002) Phosphatidylserine binding alters the conformation and specifically enhances the cofactor activity of bovine factor Va. Biochemistry 41:5675–5684PubMedCrossRefGoogle Scholar
  141. 141.
    Koppaka V, Talbot WF, Zhai X, et al (1997) Roles of factor Va heavy and light chains in protein and lipid rearrangements associated with the formation of a bovine factor Va-membrane complex. Biophys J 73:2638–2652PubMedCrossRefGoogle Scholar
  142. 142.
    Zeibdawi AR, Pryzdial EL (2001) Mechanism of factor Va inactivation by plasmin: loss of A2 and A3 domains from a Ca2+-dependent complex of fragments bound to phospholipid. J Biol Chem 276:19929–19936PubMedCrossRefGoogle Scholar
  143. 143.
    Rosing J, Bakker HM, Thomassen MCLGD, et al (1993) Characterization of two forms of human factor Va with different cofactor activities. J Biol Chem 268:21130–21136PubMedGoogle Scholar
  144. 144.
    Kim SW, Ortel TL, Quinn-Allen MA, et al (1999) Partial glycosylation at asparagine-2181 of the second C-type domain of human factor V modulates assembly of the prothrombinase complex. Biochemistry 38:11448–11454PubMedCrossRefGoogle Scholar
  145. 145.
    Weinreb GE, Mukhopadhyay K, Majumder R, et al (2003) Cooperative roles of factor V(a) and phosphatidylserine-containing membranes as cofactors in prothrombin activation. J Biol Chem 278:5679–5684PubMedCrossRefGoogle Scholar
  146. 146.
    Annamalai AE, Rao AK, Chiu HC, et al (1987) Epitope mapping of functional domains of human factor Va with human and murine monoclonal antibodies: evidence for the interaction of heavy chain with factor Xa and calcium. Blood 70:139–146PubMedGoogle Scholar
  147. 147.
    Kalafatis M, Xue J, Lawler CM, et al (1994) Contribution of the heavy and light chains of factor Va to the interaction with factor Xa. Biochemistry 33:6538–6545PubMedCrossRefGoogle Scholar
  148. 148.
    Kojima Y, Heeb MJ, Gale AJ, et al (1998) Binding site for blood coagulation factor Xa involving residues 311–325 in factor Va. J Biol Chem 273:14900–14905PubMedCrossRefGoogle Scholar
  149. 149.
    Kalafatis M, Mann KG (2001) The role of the membrane in the inactivation of factor Va by plasmin: amino acid region 307–348 of factor V plays a critical role in factor Va cofactor function. J Biol Chem 276:18614–18623PubMedCrossRefGoogle Scholar
  150. 150.
    Kittur FS, Manithody C, Rezaie AR (2004) Role of the N-terminal epidermal growth factor-like domain of factor X/Xa. J Biol Chem 279:24189–24196PubMedCrossRefGoogle Scholar
  151. 151.
    Guinto ER, Esmon CT (1984) Loss of prothrombin and of factor Xa-factor Va interactions upon inactivation of factor Va by activated protein C. J Biol Chem 259:13986–13992PubMedGoogle Scholar
  152. 152.
    Luckow EA, Lyons DA, Ridgeway TM, et al (1989) Interaction of clotting factor V heavy chain with prothrombin and prethrombin 1 and role of activated protein C in regulating this interaction: analysis by analytical ultracentrifugation. Biochemistry 28:2348–2354PubMedCrossRefGoogle Scholar
  153. 153.
    Akhavan S, De Cristofaro R, Peyvandi F, et al (2002) Molecular and functional characterization of a natural homozygous Arg67His mutation in the prothrombin gene of a patient with a severe procoagulant defect contrasting with a mild hemorrhagic phenotype. Blood 100:1347–1353PubMedCrossRefGoogle Scholar
  154. 154.
    Dharmawardana KR, Olson ST, Bock PE (1999) Role of regulatory exosite I in binding of thrombin to human factor V, factor Va, factor Va subunits, and activation fragments. J Biol Chem 274:18635–18643PubMedCrossRefGoogle Scholar
  155. 155.
    Dharmawardana KR, Bock PE (1998) Demonstration of exosite I-dependent interactions of thrombin with human factor V and factor Va involving the factor Va heavy chain: analysis by affinity chromatography employing a novel method for active-site-selective immobilization of serine proteinases. Biochemistry 37:13143–13152PubMedCrossRefGoogle Scholar
  156. 156.
    Yegneswaran S, Mesters RM, Fernandez JA, et al (2004) Prothrombin residues 473–487 contribute to factor Va binding in the prothrombinase complex. J Biol Chem 279:49019–49025PubMedCrossRefGoogle Scholar
  157. 157.
    Taneda H, Andoh K, Nishioka J, et al (1994) Blood coagulation factor Xa interacts with a linear sequence of the kringle 2 domain of prothrombin. J Biochem (Tokyo) 116:589–597PubMedGoogle Scholar
  158. 158.
    Gale AJ, Griffin JH (2004) Characterization of a thrombomodulin binding site on protein C and its comparison to an activated protein C binding site for factor Va. Proteins 54:433–441PubMedCrossRefGoogle Scholar
  159. 159.
    Kalafatis M, Egan JO, van’t Veer C, et al (1997) The regulation of clotting factors. Crit Rev Eukaryot Gene Expr 7:241–280PubMedGoogle Scholar
  160. 160.
    Stoylova SS, Lenting PJ, Kemball-Cook G, et al (1999) Electron crystallography of human blood coagulation factor VIII bound to phospholipid monolayers. J Biol Chem 274:36573–36578PubMedCrossRefGoogle Scholar
  161. 161.
    The PyMOL Molecular Graphics System [http://www.pymol.org]Google Scholar
  162. 162.
    Cuff JA, Clamp ME, Siddiqui AS, et al (1998) JPred: a consensus secondary structure prediction server. Bioinformatics 14:892–893PubMedCrossRefGoogle Scholar
  163. 163.
    Van Gunsteren WF, Mark AE (1992) On the interpretation of biochemical data by molecular dynamics computer simulation. Eur J Biochem 204:947–961PubMedCrossRefGoogle Scholar
  164. 164.
    Brunger AT, Adams PD, Clore GM, et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 4:905–921CrossRefGoogle Scholar
  165. 165.
    Brooks B, Bruccoleri R, Olafson B, et al (1983) A program for macromolecular energy, minimization and dynamics calculations. J Comp Chem 4:187–217CrossRefGoogle Scholar
  166. 166.
    Katchalski-Katzir E, Shariv I, Eisenstein M, et al (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89:2195–2199PubMedCrossRefGoogle Scholar
  167. 167.
    Gabb HA, Jackson RM, Sternberg MJ (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 272:106–120PubMedCrossRefGoogle Scholar
  168. 168.
    Jackson RM, Gabb HA, Sternberg M (1998) Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. J Mol Biol 276:265–285PubMedCrossRefGoogle Scholar
  169. 169.
    Stoilova-McPhie S, Parmenter CD, Segers K, et al (2008) Defining the structure of membrane-bound human blood coagulation factor Va. J Thromb Haemost 6:76–82PubMedGoogle Scholar
  170. 170.
    Lee CJ, Lin P, Chandrasekaran V, et al (2008) Proposed structural models of human factor Va and prothrombinase. J Thromb Haemost 6:83–89PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Stephen J. Everse
    • 1
  • Ty E. Adams
    • 2
  • Kenneth G. Mann
    • 3
  1. 1.Department of BiochemistryUniversity of VermontBurlingtonUSA
  2. 2.Department of Haematology, Division of Structural Medicine, Thrombosis Research Unit, Cambridge Institute for Medical ResearchUniversity of Cambridge Wellcome Trust/MRCCambridgeUK
  3. 3.Department of BiochemistryUniversity of VermontColchesterUSA

Personalised recommendations