Skip to main content

Hypercoagulable States

  • Chapter

Abstract

Hypercoagulable states are clinical conditions of patients who are unusually predisposed to venous or arterial thromboembolism. They are also called thrombophilias or prothrombotic disorders. Numerous congenital or acquired risk factors for hypercoagulable states were identified over the last three decades. Patients with inherited thrombotic disorders, including deficiencies of antithrombin, protein C, or protein S, are referred to as having a congenital hypercoagulable state. These deficiencies are uncommon but strong risk factors for thromboembolism, whereas the more recently discovered genetic variants, such as factor V Leiden and prothrombin variant, are common and weak risk factors, causing disease only in the presence of other factors. Patients with an increased risk of developing thrombotic complications because they are of advanced age, are immobilized, are in a pregnancy or puerperium, are undergoing surgery, are having cancer, and/or are using oral contraceptives or hormone replacement therapy are referred to as having an acquired hypercoagulable state. In these patients, the cause of thrombosis is frequently multifactorial and complex. Identification of such conditions may indicate a need for aggressive prophylaxis during high-risk periods, a need for prolonged treatment after an initial episode of thromboembolism, avoidance of oral contraceptives, and investigation of asymptomatic family members when a familial disorder is identified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosendaal FR (2005) Venous thrombosis: the role of genes, environment, and behavior. Hematology [Am Soc Hematol Educ Program] 1–12

    Google Scholar 

  2. Kitchens C (1985) Concept of hypercoagulability: a review of its development, clinical application, and recent progress. Semin Thromb Hemost 11:293–315

    Article  PubMed  CAS  Google Scholar 

  3. Tripodi A, Mannucci PM (2007) Abnormalities of hemostasis in chronic liver disease: reappraisal of their clinical significance and need for clinical and laboratory research. J Hepatol 46:727–733

    Article  PubMed  CAS  Google Scholar 

  4. Schafer AI (1985) The hypercoagulable states. Ann Intern Med 102:814

    PubMed  CAS  Google Scholar 

  5. Johnson CM, Mureebe L, Silver D (2005) Hypercoagulable states: a review. Vasc Endovasc Surg 39:123–133

    Article  Google Scholar 

  6. Bauer KA (2001) The thrombophilias: well-defined risk factors with uncertain therapeutic implications. Ann Intern Med 135:367–373

    PubMed  CAS  Google Scholar 

  7. Cushman M (2005) Inherited risk factors for venous thrombosis. Hematology 2005:452–457

    Article  Google Scholar 

  8. Franco R, Reitsma P (2001) Genetic risk factors of venous thrombosis. Hum Genet 109:369–384

    Article  PubMed  CAS  Google Scholar 

  9. Van Boven HH, Lane DA (1997) Antithrombin and its inherited deficiency states. Semin Hematol 34:118–204

    Google Scholar 

  10. Egeberg O (1965) Inherited antithrombin deficiency causing thrombophilia. Thromb Diath Haemorrh 13:516–530

    PubMed  CAS  Google Scholar 

  11. Chowdhury V, Lane D, Mille B, et al (1994) Homozygous antithrombin deficiency: report of two new cases (99 Leu to Phe) associated with arterial and venous thrombosis. Thromb Haemost 72:198–202

    PubMed  CAS  Google Scholar 

  12. Okajima K, Ueyama H, Hashimoto Y, et al (1989) Homozygous variant of antithrombin III that lacks affinity for heparin, AT III Kumamoto. Thromb Haemost 61:20–24

    PubMed  CAS  Google Scholar 

  13. Boyer C, Wolf M, Vedrenne J, et al (1986) Homozygous variant of antithrombin III: AT III Fontainebleau. Thromb Haemost 56:250–255

    PubMed  CAS  Google Scholar 

  14. Ishiguro K, Kojima T, Kadomatsu K, et al (2000) Complete antithrombin deficiency in mice results in embryonic lethality. J Clin Invest 106:873–878

    Article  PubMed  CAS  Google Scholar 

  15. Lane D, Bayston T, Olds R, et al (1997) Antithrombin mutation database: 2nd (1997) update: For the Plasma Coagulation Inhibitors Subcommittee of the Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost 77:197–211

    Article  PubMed  CAS  Google Scholar 

  16. Olds RJ, Lane DA, Chowdhury V, et al (1993) Complete nucleotide sequence of the antithrombin gene: evidence for homologous recombination causing thrombophilia. Biochemistry 32:4216–4224

    Article  PubMed  CAS  Google Scholar 

  17. Bayston T, Lane D (1997) Antithrombin: molecular basis of deficiency. Thromb Haemost 78:339–343

    PubMed  CAS  Google Scholar 

  18. Van Boven HH, Olds RJ, Thein SL, et al (1994) Hereditary antithrombin deficiency: heterogeneity of the molecular basis and mortality in Dutch families. Blood 84:4209–4213

    PubMed  Google Scholar 

  19. Sagar S, Stamatakis JD, Higgins AF, et al (1976) Efficacy of low-dose heparin in prevention of extensive deep-vein thrombosis in patients undergoing total-hip replacement. Lancet 307:1151–1154

    Article  Google Scholar 

  20. Bucciarelli P, Rosendaal FR, Tripodi A, et al (1999) Risk of venous thromboembolism and clinical manifestations in carriers of antithrombin, protein C, protein S deficiency, or activated protein C resistance: a multicenter collaborative family study. Arterioscler Thromb Vasc Biol 19:1026–1033

    PubMed  CAS  Google Scholar 

  21. Pabinger I, Schneider B (1996) Thrombotic risk in hereditary antithrombin III, protein C, or protein S deficiency: a cooperative, retrospective study. Arterioscler Thromb Vasc Biol 16:742–748

    PubMed  CAS  Google Scholar 

  22. Griffin J, Evatt, B, Zimmerman, TS, et al (1981) Deficiency of protein C in congenital thrombotic disease. J Clin Invest 68:1370–1373

    Article  PubMed  CAS  Google Scholar 

  23. Broekmans A, Veltkamp, JJ, Bertina, RM (1983) Congenital protein C deficiency and venous thromboembolism: a study of three Dutch families. N Engl J Med 309:340–344

    Article  PubMed  CAS  Google Scholar 

  24. Comp P, Nixon RR, Cooper DW, et al (1984) Familial protein S deficiency is associated with recurrent thrombosis. J Clin Invest 74:2082–2088

    Article  PubMed  CAS  Google Scholar 

  25. Schwarz HP, Fischer M, Hopmeier P, et al (1984) Plasma protein S deficiency in familial thrombotic disease. Blood 64:1297–1300

    PubMed  CAS  Google Scholar 

  26. Kamiya T, Sugihara T, Ogata K, et al (1986) Inherited deficiency of protein S in a Japanese family with recurrent venous thrombosis: a study of three generations. Blood 67:406–410

    PubMed  CAS  Google Scholar 

  27. Miletich J, Sherman L, Broze G (1987) Absence of thrombosis in subjects with heterozygous protein C deficiency. N Engl J Med 317:991–996

    PubMed  CAS  Google Scholar 

  28. Reitsma PH, Poort SR, Allaart CF, et al (1991) The spectrum of genetic defects in a panel of 40 Dutch families with symptomatic protein C deficiency type I: heterogeneity and founder effects. Blood 78:890–894

    PubMed  CAS  Google Scholar 

  29. Aiach M, Gandrille S, Emmerich J (1995) A review of mutations causing deficiencies of antithrombin, protein C and protein S. Thromb Haemost 74:81–89

    PubMed  CAS  Google Scholar 

  30. Reitsma P (1997) Protein C deficiency: from gene defects to disease. Thromb Haemost 78:344–350

    PubMed  CAS  Google Scholar 

  31. Millar D, Johansen B, Berntorp E, et al (2000) Molecular genetic analysis of severe protein C deficiency. Hum Genet 106:646–653

    Article  PubMed  CAS  Google Scholar 

  32. Van Wijnen M, Stam J, van’t Veer C, et al (1996) The interaction of protein S with the phospholipid surface is essential for the activated protein C-independent activity of protein S. Thromb Haemost 76:397–403

    PubMed  Google Scholar 

  33. Koppelman SJ, Hackeng TM, Sixma JJ, et al (1995) Inhibition of the intrinsic factor X activating complex by protein S: evidence for a specific binding of protein S to factor VIII. Blood 86:1062–1071

    PubMed  CAS  Google Scholar 

  34. Zoller B, Garcia de Frutos P, Dahlback B (1995) Evaluation of the relationship between protein S and C4b-binding protein isoforms in hereditary protein S deficiency demonstrating type I and type III deficiencies to be phenotypic variants of the same genetic disease. Blood 85:3524–3531

    PubMed  CAS  Google Scholar 

  35. Gandrille S, Borgel D, Sala N, et al (2000) Protein S deficiency: a database of mutations-summary of the first update; for the Plasma Coagulation Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost 84:918

    PubMed  CAS  Google Scholar 

  36. Makris M, Leach M, Beauchamp NJ, et al (2000) Genetic analysis, phenotypic diagnosis, and risk of venous thrombosis in families with inherited deficiencies of protein S. Blood 95:1935–1941

    PubMed  CAS  Google Scholar 

  37. Kimura R, Honda S, Kawasaki T, et al (2006) Protein S-K196E mutation as a genetic risk factor for deep vein thrombosis in Japanese patients. Blood 107:1737–1738

    Article  PubMed  CAS  Google Scholar 

  38. Bertina RM, Koeleman BPC, Koster T, et al (1994) Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369:64–67

    Article  PubMed  CAS  Google Scholar 

  39. Seligsohn U, Lubetsky A (2001) Genetic susceptibility to venous thrombosis. N Engl J Med 344:1222–1231

    Article  PubMed  CAS  Google Scholar 

  40. Martinelli I, Mannucci PM, De Stefano V, et al (1998) Different risks of thrombosis in four coagulation defects associated with inherited thrombophilia: a study of 150 families. Blood 92:2353–2358

    PubMed  CAS  Google Scholar 

  41. Koster T, Rosendaal FR (1993) Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study. Lancet 342:1503–1506

    Article  PubMed  CAS  Google Scholar 

  42. Svensson PJ, Dahlback B (1994) Resistance to activated protein C as a basis for venous thrombosis. N Engl J Med 330:517–522

    Article  PubMed  CAS  Google Scholar 

  43. Ridker PM, Hennekens CH, Lindpaintner K, et al (1995) Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 332:912–917

    Article  PubMed  CAS  Google Scholar 

  44. Salomon O, Steinberg DM, Zivelin A, et al (1999) Single and combined prothrombotic factors in patients with idiopathic venous thromboembolism: prevalence and risk assessment. Arterioscler Thromb Vasc Biol 19:511–518

    PubMed  CAS  Google Scholar 

  45. Rosendaal FR, Koster T, Vandenbroucke JP, et al (1995) High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 85:1504–1508

    PubMed  CAS  Google Scholar 

  46. Rees DC, Cox M (1995) World distribution of factor V Leiden. Lancet 346:1133–1134

    Article  PubMed  CAS  Google Scholar 

  47. Ridker P, Miletich JP, Hennekens CH, et al (1997) Ethnic distribution of factor V Leiden in 4047 men and women: implications for venous thromboembolism screening. JAMA 277:1305–1307

    Article  PubMed  CAS  Google Scholar 

  48. Zivelin A, Griffin JH, Xu X, et al (1997) A single genetic origin for a common Caucasian risk factor for venous thrombosis. Blood 89:397–402

    PubMed  CAS  Google Scholar 

  49. Lindqvist P, Svensson PJ, Dahlback B, et al (1998) Factor V Q506 mutation (activated protein C resistance) associated with reduced intrapartum blood loss: a possible evolutionary selection mechanism. Thromb Haemost 79:69–73

    PubMed  CAS  Google Scholar 

  50. Poort SR, Rosendaal FR, Reitsma PH, et al (1996) A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88:3698–3703

    PubMed  CAS  Google Scholar 

  51. Doggen CJM, Cats VM, Bertina RM, et al (1998) Interaction of coagulation defects and cardiovascular risk factors: increased risk of myocardial infarction associated with factor V Leiden or prothrombin 20210A. Circulation 97:1037–1041

    PubMed  CAS  Google Scholar 

  52. Welch GN, Loscalzo J (1998) Homocysteine and atherothrombosis. N Engl J Med 338:1042–1050

    Article  PubMed  CAS  Google Scholar 

  53. Guba S, Fonseca V, Fink L (1999) Hyperhomocysteinemia and thrombosis. Semin Thromb Hemost 25:291–309

    Article  PubMed  CAS  Google Scholar 

  54. De Stefano V, Casorelli I, Rossi E, et al (2000) Interaction between hyperhomocysteinemia and inherited thrombophilic factors in venous thromboembolism. Semin Thromb Hemost 26:305–311

    Article  PubMed  Google Scholar 

  55. Frederiksen J, Juul K, Grande P, et al (2004) Methylenetetrahydrofolate reductase polymorphism (C677T), hyperhomocysteinemia, and risk of ischemic cardiovascular disease and venous thromboembolism: prospective and case-control studies from the Copenhagen City Heart Study. Blood 104:3046–3051

    Article  PubMed  CAS  Google Scholar 

  56. Mansilha A, Araujo F, Severo M, et al (2005) Genetic polymorphisms and risk of recurrent deep venous thrombosis in young people: prospective cohort study. Eur J Vasc Endovasc Surg 30:545–549

    Article  PubMed  CAS  Google Scholar 

  57. Rosendaal FR (1999) Venous thrombosis: a multicausal disease. Lancet 353: 1167–1173

    Article  PubMed  CAS  Google Scholar 

  58. Vlieg AvH, van der Linden IK, Bertina RM, et al (2000) High levels of factor IX increase the risk of venous thrombosis. Blood 95:3678–3682

    Google Scholar 

  59. Meijers JCM, Tekelenburg WLH, Bouma BN, et al (2000) High levels of coagulation factor XI as a risk factor for venous thrombosis. N Engl J Med 342:696–701

    Article  PubMed  CAS  Google Scholar 

  60. Joist J (1990) Hypercoagulability: introduction and perspective. Semin Thromb Hemost 16:151–157

    Article  PubMed  CAS  Google Scholar 

  61. Bockenstedt PL (2006) Management of hereditary hypercoagulable disorders. Hematology 2006:444–449

    Article  Google Scholar 

  62. Horinaga H, Otsuka H, Ishizuka B (2005) Changes in protein S activities and its significance in the coagulating and fibrinolytic system during normal pregnancy. J Obstet Gynecol Neonatal Hematol 14:36–42

    Google Scholar 

  63. Bonnar J, McNicol GP, Douglas AS (1969) Fibrinolytic enzyme system and pregnancy. BMJ 3:387–389

    Article  PubMed  CAS  Google Scholar 

  64. Dilley A, Austin H, El-Jamil M, et al (2000) Genetic factors associated with thrombosis in pregnancy in a United States population. Am J Obstet Gynecol 183:1271–1277

    Article  PubMed  CAS  Google Scholar 

  65. Gomes MPV, Deitcher SR (2004) Risk of venous thromboembolic disease associated with hormonal contraceptives and hormone replacement therapy: a clinical review. Arch Intern Med 164:1965–1976

    Article  PubMed  CAS  Google Scholar 

  66. Quehenberger P, Loner UKS, Handler S, et al (1996.) Increased levels of activated factor VII and decreased plasma protein S activity and circulating thrombomodulin during use of oral contraceptives. Thromb Haeomost 76:729–734

    CAS  Google Scholar 

  67. Gruppo Italiano Studio P (1995) Polycythemia vera: the natural history of 1213 patients followed for 20 years. Ann Intern Med 123:656–664

    Google Scholar 

  68. Landolfi R, Di Gennaro L, Barbui T, et al (2007) Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood 109:2446–2452

    Article  PubMed  CAS  Google Scholar 

  69. Kralovics R, Passamonti F, Buser AS, et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790

    Article  PubMed  CAS  Google Scholar 

  70. Baxter EJ, Scott LM, Campbell PJ, et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061

    PubMed  CAS  Google Scholar 

  71. James C, Ugo V, Le Couedic J-P, et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148

    Article  PubMed  CAS  Google Scholar 

  72. Patel RK, Lea NC, Heneghan MA, et al (2006) Prevalence of the activating JAK2 tyrosine kinase mutation V617F in the Budd-Chiari syndrome. Gastroenterology 130: 2031–2038

    Article  PubMed  CAS  Google Scholar 

  73. Primignani M, Barosi G, Bergamaschi G, et al (2006) Role of the JAK2 mutation in the diagnosis of chronic myeloproliferative disorders in splanchnic vein thrombosis. Hepatology 44:1528–1534

    Article  PubMed  CAS  Google Scholar 

  74. Colaizzo D, Amitrano L, Tiscia G, et al (2007) The JAK2 V617F mutation frequently occurs in patients with portal and mesenteric venous thrombosis. J Thromb Haemost 5:55–61

    Article  PubMed  CAS  Google Scholar 

  75. De Stefano V, Fiorini A, Rossi E, et al (2007) Incidence of the JAK2 V617F mutation among patients with splanchnic or cerebral venous thrombosis and without overt chronic myeloproliferative disorders. J Thromb Haemost 5:708–714

    Article  PubMed  Google Scholar 

  76. De Stefano V, Finazzi G, Mannucci PM (1996) Inherited thrombophilia: pathogenesis, clinical syndromes, and management. Blood 87:3531–3544

    PubMed  Google Scholar 

  77. Tripodi A, Mannucci PM (2001) Laboratory investigation of thrombophilia. Clin Chem 47:1597–1606

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Kojima, T., Saito, H. (2008). Hypercoagulable States. In: Tanaka, K., Davie, E.W., Ikeda, Y., Iwanaga, S., Saito, H., Sueishi, K. (eds) Recent Advances in Thrombosis and Hemostasis 2008. Springer, Tokyo. https://doi.org/10.1007/978-4-431-78847-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-78847-8_34

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-78846-1

  • Online ISBN: 978-4-431-78847-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics