Skip to main content

A Linkage in the Developmental Pathway of Vascular and Hematopoietic Cells

  • Chapter
Recent Advances in Thrombosis and Hemostasis 2008
  • 1336 Accesses

Abstract

Blood vessels consist of at least three kinds of cell: endothelial cells lining the inside of the lumen to form tubes, mural cells (vascular smooth muscle cells and pericytes) supporting the endothelial tubes, and blood cells flowing inside. Blood and vascular cells are closely related to each other in their anatomical locations, origins, and differentiation processes. In addition to a long history of histological analyses, recent progress in stem cell biology using various genetic animal models, especially in vivo cell tracing technologies, and in vitro stem cell differentiation systems are now succeeding in providing molecular and cellular bases of the relation between these two cell populations. Accumulating data suggest that their differentiation processes are more complicated than was previously expected. That is, multiple origins of progenitor cells, multiple pathways of differentiation, and multiple molecular functions regulating cell fates exist and complicatedly interact with each other to complete the functional circulation system with blood and vessels. This chapter summarizes recent advances in the developmental processes and the relation of blood and vascular cells, especially between blood and endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sabin FR (1920) Studies on the origin of blood-vessels and of red blood corpuscules as seen in the living blastoderm of chicks during the second day of incubation. Carnegie Contrib Embryol 272:214–262

    Google Scholar 

  2. Risaw W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  Google Scholar 

  3. Carmeliet O (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  PubMed  CAS  Google Scholar 

  4. Eichmann A, Yuan L, Moyon D, et al (2005) Vascular development: from precursor cells to branched arterial and venous networks. Int J Dev Biol 49:259–267

    Article  PubMed  CAS  Google Scholar 

  5. Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438:937–945

    Article  PubMed  CAS  Google Scholar 

  6. Alitalo K, Tammela T, Petrova T (2005) Lymphangiogenesis in development and human disease. Nature 438:946–953

    Article  PubMed  CAS  Google Scholar 

  7. Yamashita JK (2007) Differentiation of arterial, venous, and lymphatic endothelial cells from vascular progenitors. Trends Cardiovasc Med 17:59–63

    Article  PubMed  CAS  Google Scholar 

  8. Yamashita J, Itoh H, Hirashima M, et al (2000) Flk1 positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96

    Article  PubMed  CAS  Google Scholar 

  9. Yurugi-Kobayashi T, Itoh H, Schroeder T, et al (2006) Adrenomedullin/cyclic AMP pathway induces Notch activation and differentiation of arterial endothelial cells from vascular progenitors. Arterioscler Thromb Vasc Biol 26:1977–1984

    Article  PubMed  CAS  Google Scholar 

  10. Kono T, Kubo H, Shimazu C, et al (2006). Differentiation of lymphatic endothelial cells from embryonic stem cells on OP9 stromal cells. Arterioscler Thromb Vasc Biol 26:2070–2076

    Article  PubMed  CAS  Google Scholar 

  11. Liersch R, Nay F, Lu L, et al (2006) Induction of lymphatic endothelial cell differentiation in embryoid bodies. Blood 107:1214–1216

    Article  PubMed  CAS  Google Scholar 

  12. Kreuger J, Nilsson I, Kerjaschki D, et al (2006) Early lymph vessel development from embryonic stem cells. Arterioscler Thromb Vasc Biol 26:1073–1078

    Article  PubMed  CAS  Google Scholar 

  13. Cumano A, Godin I (2001) Pluripotent hematopoietic stem cell development during embryogenesis. Curr Opin Immunol 13:166–171

    Article  PubMed  CAS  Google Scholar 

  14. Ueno H, Weissman IL (2007) Blood lines from embryo to adult. Nature 446:996–997

    Article  PubMed  CAS  Google Scholar 

  15. Nishikawa SI (2001) A complex linkage in the developmental pathway of endothelial and hematopoietic cells. Curr Opin Cell Biol 13:673–678

    Article  PubMed  CAS  Google Scholar 

  16. Jaffredo T, Nottingham W, Liddiard K, et al (2005) From hemangioblast to hematopoietic stem cell: an endothelial connection? Exp Hematol 33:1029–1040

    Article  PubMed  Google Scholar 

  17. Mikkola HKA, Orkin SH (2006) The journey of developing hematopoietic stem cells. Development 133:3733–3744

    Article  PubMed  CAS  Google Scholar 

  18. de Bruijn MF, Speck NA, Peeters MC, et al (2000) Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 19:2465–2474

    Article  PubMed  Google Scholar 

  19. Alvarez-Silva M, Belo-Diabangouaya P, Salaun J, et al (2003) Mouse placenta is a major hematopoietic organ. Development 130:5437–5444

    Article  PubMed  CAS  Google Scholar 

  20. Gekas C, Dieterlen-Lievre F, Orkin SH, et al (2005) The placenta is a niche for hematopoietic stem cells. Dev Cell 8:365–375

    Article  PubMed  CAS  Google Scholar 

  21. Ottersbach K, Dzierzak E (2005) The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell 8:377–387

    Article  PubMed  CAS  Google Scholar 

  22. North TE, de Bruijn MF, Stacy T, et al (2002) Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16:661–672

    Article  PubMed  CAS  Google Scholar 

  23. Bertrand JY, Giroux S, Golub R, et al (2005) Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc Natl Acad Sci U S A 102:134–139

    Article  PubMed  CAS  Google Scholar 

  24. Ueno H, Weissmann IL (2006) Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev Cell 11:519–533

    Article  PubMed  CAS  Google Scholar 

  25. Samokhvalov IM, Samokhvalov NI, Nishikawa SI (2007) Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446:1056–1061

    Article  PubMed  CAS  Google Scholar 

  26. Yoder MC, Hiatt K, Mukherjee P (1997) In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. Proc Natl Acad Sci U S A 94:6776–6780

    Article  PubMed  CAS  Google Scholar 

  27. Sabin F (1917) Origin and development of the primitive vessels of the chick and of the pig. Contrib Embyol 226:61–124

    Google Scholar 

  28. Choi K, Kennedy M, Kazarov A, et al (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732

    PubMed  CAS  Google Scholar 

  29. Huber TL, Kouskoff V, Fehling HJ, et al (2004) Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432:625–630

    Article  PubMed  CAS  Google Scholar 

  30. Smith RA, Glomski CA (1982) “Hemogenic endothelium” of the embryonic aorta: does it exist? Dev Comp Immunol 6:359–368

    Article  PubMed  CAS  Google Scholar 

  31. Nishikawa SI, Nishikawa S, Hirashima M, et al (1998) Progressive lineage analysis by cell sorting and culture identifies FLKl+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125:1747–1757

    PubMed  CAS  Google Scholar 

  32. Nishikawa SI, Nishikawa S, Kawamoto H, et al (1998) In vitro generation of lympho-hematopoietic cells from endothelial cells purified from murine embryos. Immunity 8:761–769

    Article  PubMed  CAS  Google Scholar 

  33. Jaffredo T, Gautier R, Eichmann A, et al (1998) Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125:4575–4583

    PubMed  CAS  Google Scholar 

  34. Sugiyama D, Ogawa M, Hirose I, et al (2003) Erythropoiesis from acetyl LDL incorporating endothelial cells at the preliver stage. Blood 101:4733–4738

    Article  PubMed  CAS  Google Scholar 

  35. Hirai H, Ogawa M, Suzuki N, et al (2003) Hemogenic and nonhemogenic endothelium can be distinguished by the activity of fetal liver kinase (Flk)-1 promoter/enhancer during mouse embryogenesis. Blood 101:886–893

    Article  PubMed  CAS  Google Scholar 

  36. Ogawa M, Kizumoto M, Nishikawa S, et al (1999) Expression of alpha4-integrin defines the earliest precursor of hematopoietic cell lineage diverged from endothelial cells. Blood 93:1168–1177

    PubMed  CAS  Google Scholar 

  37. Shinoda G, Umeda K, Heike T, et al (2007) Alpha4-Integrin(+) endothelium derived from primate embryonic stem cells generates primitive and definitive hematopoietic cells. Blood 109:2406–2415

    Article  PubMed  CAS  Google Scholar 

  38. Fraser ST, Ogawa M, Yokomizo T, et al (2003) Putative intermediate precursor between hematogenic endothelial cells and blood cells in the developing embryo. Dev Growth Differ 45:63–75

    Article  PubMed  CAS  Google Scholar 

  39. Yamashita JK (2004) Differentiation and diversification of vascular cells from ES cells. Int J Hematol 80:1–6

    Article  PubMed  CAS  Google Scholar 

  40. Shalaby F, Rossant J, Yamaguchi TP, et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  PubMed  CAS  Google Scholar 

  41. Kataoka H, Takakura N, Nishikawa S, et al (1997) Expressions of PDGF receptor alpha, c-Kit and Flk1 genes clustering in mouse chromosome 5 define distinct subsets of nascent mesodermal cells. Dev Growth Differ 39:729–740

    Article  PubMed  CAS  Google Scholar 

  42. Yamaguchi TP, Dumont DJ, Conlon RA, et al (1993) Flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118:489–498

    PubMed  CAS  Google Scholar 

  43. Yamashita JK, Takano M, Hiraoka-Kanie M, et al (2005) Prospective identification of cardiac progenitor potentials by a novel single cell-based cardiomyocyte induction. FASEB J 19:1534–1536

    PubMed  CAS  Google Scholar 

  44. Motoike T, Markham DW, Rossant J, et al (2003) Evidence for novel fate of Flk1+ progenitor: contribution to muscle lineage. Genesis 35:153–159

    Article  PubMed  Google Scholar 

  45. Eichmann A, Corbel C, Nataf V, et al (1997) Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc Natl Acad Sci U S A 94:5141–5146

    Article  PubMed  CAS  Google Scholar 

  46. Sakurai Y, Ohgimoto K, Kataoka Y, et al (2005) Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc Natl Acad Sci U S A 102:1076–1081

    Article  PubMed  CAS  Google Scholar 

  47. Ema M, Faloon P, Zhang WJ, et al (2003) Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes Dev 17:380–393

    Article  PubMed  CAS  Google Scholar 

  48. Moretti A, Caron L, Nakano A, et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165

    Article  PubMed  CAS  Google Scholar 

  49. Green AR, Salvaris E, Begley CG (1991) Erythroid expression of the “helix-loop-helix” gene, SCL. Oncogene 6:475–479

    PubMed  CAS  Google Scholar 

  50. Robb L, Lyons I, Li R, et al (1995) Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA 92:7075–7079

    Article  PubMed  CAS  Google Scholar 

  51. Shivdasani RA, Mayer EL, Orkin SH (1995) Absence of blood formation in mice lacking the T-cell leukemia oncoprotein tal-1/SCL. Nature 373:432–434

    Article  PubMed  CAS  Google Scholar 

  52. Visvader JE, Fujiwara Y, Orkin SH (1998) Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev 12:473–479

    Article  PubMed  CAS  Google Scholar 

  53. Endoh M, Ogawa M, Orkin S, et al (2002) SCL/tal-1-dependent process determines a competence to select the definitive hematopoietic lineage prior to endothelial differentiation. EMBO J 21:6700–6708

    Article  PubMed  CAS  Google Scholar 

  54. Warren AJ, Colledge WH, Carlton MB, et al (1994) The oncogene cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78:45–57

    Article  PubMed  CAS  Google Scholar 

  55. Pevny L, Simon MC, Robertson E, et al (1991) Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349:257–260

    Article  PubMed  CAS  Google Scholar 

  56. Wadman IA, Osada H, Grutz GG, et al (1997) The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA1, and Ldb1/NL1 proteins. EMBO J 16:3145–3157

    Article  PubMed  CAS  Google Scholar 

  57. Cantor AB, Orkin SH (2002) Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 21:3368–3376

    Article  PubMed  CAS  Google Scholar 

  58. Orkin SH (1992) GATA-binding transcription factors in hematopoietic cells. Blood 80:575–581

    PubMed  CAS  Google Scholar 

  59. Tsai FY, Keller G, Kuo FC, et al (1994) An early hematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371:221–226

    Article  PubMed  CAS  Google Scholar 

  60. Ling KW, Ottersbach K, van Hamburg JP, et al (2004) GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells. J Exp Med 200:871–882

    Article  PubMed  CAS  Google Scholar 

  61. Lugus JJ, Chung YS, Mills JC, et al (2007) GATA2 functions at multiple steps in hemangioblast development and differentiation. Development 134:393–405

    Article  PubMed  CAS  Google Scholar 

  62. Fujimoto T, Ogawa M, Minegishi N, et al (2001) Step-wise divergence of primitive and definitive haematopoietic and endothelial cell lineages during embryonic stem cell differentiation. Genes Cells 6:1113–1127

    Article  PubMed  CAS  Google Scholar 

  63. Yokomizo T, Takahashi S, Mochizuki N, et al (2007) Characterization of GATA-1(+) hemangioblastic cells in the mouse embryo. EMBO J 26:184–196

    Article  PubMed  CAS  Google Scholar 

  64. Zheng W, Flavell RA. (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89:587–596

    Article  PubMed  CAS  Google Scholar 

  65. Manaia A, Lemarchandel V, Klaine M, et al (2000) Lmo2 and GATA-3 associated expression in intraembryonic hemogenic sites. Development 127:643–653

    PubMed  CAS  Google Scholar 

  66. Okuda T, van Deursen J, Hiebert SW, et al (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84:321–330

    Article  PubMed  CAS  Google Scholar 

  67. Wang Q, Stacy T, Binder M (1996) Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A 93:3444–3449

    Article  PubMed  CAS  Google Scholar 

  68. North TE, Stacy T, Matheny CJ, et al (2004) Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells, but not in maturing erythroid cells. Stem Cells 22:158–168

    Article  PubMed  CAS  Google Scholar 

  69. Hirai H, Samokhvalov IM, Fujimoto T, et al (2005) Involvement of Runx1 in the down-regulation of fetal liver kinase-1 expression during transition of endothelial cells to hematopoietic cells. Blood 106:1948–1955

    Article  PubMed  CAS  Google Scholar 

  70. Sakamoto H, Dai G, Tsujino K, et al (2006) Proper levels of c-Myb are discretely defined at distinct steps of hematopoietic cell development. Blood 108:896–903

    Article  PubMed  CAS  Google Scholar 

  71. Pham VN, Lawson ND, Mugford JW, et al (2007) Combinatorial function of ETS transcription factors in the developing vasculature. Dev Biol 303:772–783

    Article  PubMed  CAS  Google Scholar 

  72. Rossig L, Urbich C, Bruhl T, et al (2005) Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. J Exp Med 201:1825–1835

    Article  PubMed  Google Scholar 

  73. Furuta C, Ema H, Takayanagi S, et al (2006) Discordant developmental waves of angioblasts and hemangioblasts in the early gastrulating mouse embryo. Development 133:2771–2779

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Yamashita, J.K. (2008). A Linkage in the Developmental Pathway of Vascular and Hematopoietic Cells. In: Tanaka, K., Davie, E.W., Ikeda, Y., Iwanaga, S., Saito, H., Sueishi, K. (eds) Recent Advances in Thrombosis and Hemostasis 2008. Springer, Tokyo. https://doi.org/10.1007/978-4-431-78847-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-78847-8_26

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-78846-1

  • Online ISBN: 978-4-431-78847-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics