Skip to main content

Role of Fibrinolysis in Hepatic Regeneration

  • Chapter

Abstract

Liver regeneration has been studied intensively, and it has been revealed that the major enzymes that degrade the extracellular matrix (ECM) are matrix metal-loproteinases and fibrinolytic enzymes. This proteolytic activity regulates ECM assembly, editing of excess ECM components, remodeling of the ECM structure, and release of growth factors and cytokines during the liver regeneration process. The fibrinolytic factors act in the liver regeneration process in the following two ways: activation of growth factors and degradation of ECM components. Studies on these points have been drastically advanced by the use of genetic all-deficient mice. Plasminogen (Plg) and urokinase-type plasminogen activator (u-PA) are bound to hepatocytes from mouse liver. Binding of Plg to hepatocytes impairs the inhibitory effect of α2-antiplasmin (α2-AP); that is, activation of Plg by Plg activator (PA) in the presence of hepatocytes is more enhanced than in the absence of hepatocytes. u-PA activates hepato cyte growth factor (HGF) and induces the proliferation of hepatocytes. Because Plg cleared ECM in mouse models, the loss of Plg showed a delay in liver regeneration. Thus, fibrinolytic factors are thought to act in two ways in the process of healing and regeneration after liver injury. The u-PA/PA inhibitor type-1 (PAI-1) system regulates the proliferation of hepatocytes by controlling HGF activation. The plasmin/α2-AP system regulates the microenvironment of liver regeneration by controlling ECM degradation. It is anticipated that in the future the regulation of proteases, which involve mainly fibrinolytic factors, will be a form of regenerative medicine for the liver.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Okada K, Yuasa H, Hagiya Y, et al (1995) Fibrinolytic activity in liver tissues of stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 22:S275–S276

    Article  CAS  Google Scholar 

  2. Collen D, Lijnen HR (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114–3124

    PubMed  CAS  Google Scholar 

  3. Haijar KA (1995) Cellular receptors in the regulation of plasmin generation. Thromb Haemost 74:294–301

    Google Scholar 

  4. Pepper MS (2001) Extracellular proteolysis and angiogenesis. Thromb Haemost 86:346–355

    PubMed  CAS  Google Scholar 

  5. Bhat GJ, Gunaje JJ, Idell S (1999) Urokinase-type plasminogen actvator induces tyrosine phosphorylation of a 78-kDa protein in H-157 cells. Am J Physiol 277:L301–L309

    PubMed  CAS  Google Scholar 

  6. Fukao H, Ueshima S, Okada K, et al (1997) The role of the pericellular fibrinolytic system in angiogenesis. Jpn J Physiol 47:161–171

    Article  PubMed  CAS  Google Scholar 

  7. Carmelie P (1997) Insights from gene-inactivation studies of the coagulation and plasminogen. Fibrinol Proteol 11:181–191

    Article  Google Scholar 

  8. Degen JL (2001) Genetic interactions between the coagulation and fibrinolytic system. Thromb Haemost 86:130–137

    PubMed  CAS  Google Scholar 

  9. Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60–66

    Article  PubMed  CAS  Google Scholar 

  10. Mars WM, Zarnegar R, Michalopoulos GK (1993) Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am J Pathol 143:949–958

    PubMed  CAS  Google Scholar 

  11. Naldini L, Vignai E, Bardelli A, et al (1995) Biological activation of pro-HGF (hepatocyte growth factor) by urokinase is controlled by a stoichiometric reaction. J Biol Chem 270:603–611

    Article  PubMed  CAS  Google Scholar 

  12. Matsuoka H, Sisson TH, Nishiuma T, et al (2006) Plaminogen-mediated activation and release of hepatocyte growth factor from extracellular matrix. Am J Respir Cell Biol 35:705–713

    Article  CAS  Google Scholar 

  13. Okuno M, Akita K, Moriwaki H, et al (2001) Prevention of rat hepatic fibrosis by the protease inhibitor, camostat mesilate, via reduced generation of active TGF-β. Gastroentrology 120:1784–1800

    Article  CAS  Google Scholar 

  14. Werb Z (1997) ECM and cell surface proteolysis: regulating cellular ecology. Cell 91:439–442

    Article  PubMed  CAS  Google Scholar 

  15. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  PubMed  CAS  Google Scholar 

  16. Nakamura T, Nawa K, Ichihara A (1984) Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rat. Biochem Biophys Res Commun 122:1450–1459

    Article  PubMed  CAS  Google Scholar 

  17. Michalopoulos G, Houck KA, Dolan ML, et al (1984) Control of hepatocyte replication by two serum factors. Cancer Res 44:4414–4419

    PubMed  CAS  Google Scholar 

  18. Gherardi E, Stoker M (1990) Hepatocytes and scatter factor. Nature 346:228.

    Article  PubMed  CAS  Google Scholar 

  19. Naldini L, Vigna E, Narsimhan RP, et al (1991) Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-met. Oncogene 6:501–504

    PubMed  CAS  Google Scholar 

  20. Schmidt C, Bladt F, Goedecke S, et al (1995) Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373:699–702

    Article  PubMed  CAS  Google Scholar 

  21. Uehara Y, Minowa O, Mori C, et al (1995) Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373:702–705

    Article  PubMed  CAS  Google Scholar 

  22. Shimomura T, Miyazawa K, Komiyama Y, et al (1995) Activation of hepatocyte growth factor by two homologous proteases, blood-coagulation factor XIIa and hepatocyte growth factor activator. Eur J Biochem 229:257–261

    Article  PubMed  CAS  Google Scholar 

  23. Miyazawa K, Shimomura T, Kitamura A, et al (1993) Molecular cloning and sequence analysis of the cDNA for a human serine protease responsible for activation of hepatocyte growth factor: structural similarity of the protease precursor to blood coagulation factor XII. J Biol Chem 268:10024–10028

    PubMed  CAS  Google Scholar 

  24. Miyazawa K, Shimomura T, Kitamura A, et al (1996) Activation of hepatocyte growth factor in the injured tissues is mediated by hepatocyte growth factor activator. J Biol Chem 271:3615–3618

    Article  PubMed  CAS  Google Scholar 

  25. Yanagita K, Nagaike M, Ishibashi H, et al (1992) Lung may have an endocrine function producing hepatocyte growth factor in response to injury of distal organs. Biochem Biophys Res Commun 182:802–809

    Article  PubMed  CAS  Google Scholar 

  26. Mars WM, Liu M-L, Kitson RP, et al (1995) Immediate early detection of urokinase receptor after partial hepatectomy and its implications for initiation of liver regeneration. Hepatology 21:1695–1701

    PubMed  CAS  Google Scholar 

  27. Olle EW, Ren X, McClintock SD, et al (2006) Matrix metalloproteinase-9 is an important factor in hepatic regeneration after partial hepatectomy in mice. Hepatology 44:540–549

    Article  PubMed  CAS  Google Scholar 

  28. Shimizu M, Hara A, Okuno M, et al (2001) Mechanism of retarded liver regeneration in plasminogen activator-deficient mice: impaired activation of hepatocyte growth factor after Fas-mediated massive hepatic apoptosis. Hepatology 33:569–576

    Article  PubMed  CAS  Google Scholar 

  29. Olaso E, Friedman SL (1998) Molecular regulation of hepatic fibrogenesis. J Hepatol 29:836–847

    Article  PubMed  CAS  Google Scholar 

  30. Border WA, Noble NA (1994) Transforming growth factor β in tissue fibrosis. N Engl J Med 331:1286–1292

    Article  PubMed  CAS  Google Scholar 

  31. Khalil N (1999) TGF-β latent to active. Microbes Infect 1:1255–1263

    Article  PubMed  CAS  Google Scholar 

  32. Crawford SE, Stellmach V, Murphy-Ullrich JE, et al (1998) Thrombospondin-1 is a major activator of TGF-β in vivo. Cell 93:1159–1170

    Article  PubMed  CAS  Google Scholar 

  33. Munger JS, Huang X, Kawakatsu H, et al (1999) The integrin αvβ6 bind and activates latent TGF-β: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–328

    Article  PubMed  CAS  Google Scholar 

  34. Akita K, Okuno M, Enya M, et al (2002) Impaired liver regeneration in mice by lipopolysaccharide via TNF-α/kallikrein-mediated activation of latent TGF-β. Gastroentrology 123:352–364

    Article  CAS  Google Scholar 

  35. Kojima S, Hayashi S, Shimokado K, et al (2000) Transcriptional activation of urokinase by the Kruppel-like factor Zf9/COPEB activates latent TGF-βl in vascular endothelial cells. Blood 95:1309–1316

    PubMed  CAS  Google Scholar 

  36. Ashkenas J, Muschler J, Bisserll MJ, et al (1996) The extracellular matrix in epithelial biology: shared molecules and common themes in distant phyla. Dev Biol 180:433–444

    Article  PubMed  CAS  Google Scholar 

  37. Martinez-Hernandez A, Amenta PS (1995) The extracellular matrix in hepatic regeneration. FASEB J 9:1401–1410

    PubMed  CAS  Google Scholar 

  38. Kim T-H, Mars WM, Stolz DB, et al (1997) Extracellular matrix remodeling at the early stages of liver regeneration in the rat. Hepatology 26:896–904

    Article  PubMed  CAS  Google Scholar 

  39. Okumura N, Seki T, Ariga T (2007) Cell surface-bound plasminogen regulates hepatocyte proliferation through a u-PA-dependent mechanism. Biosci Biotechnol Biochem 71:1542–1549

    Article  PubMed  CAS  Google Scholar 

  40. Jenkins GR, Seiffert D, Parmer RJ, et al (1997) Regulation of plasminogen gene expression by interleukin-6. Blood 89:2394–2403

    PubMed  CAS  Google Scholar 

  41. Menoud P-A, Sappino N, Boudal-Khoshbeen M, et al (1996) The kidney is a major site of α2-antiplasmin production. J Clin Invest 97:2478–2484

    Article  PubMed  CAS  Google Scholar 

  42. Ouax PHA, van den Hoogen CM, Verheijen JH, et al (1990) Endotoxin induction of plasminogen activator and plasminogen activator inhibitor type 1 mRNA in rat tissues in vivo. J Biol Chem 265:15560–15563

    Google Scholar 

  43. Uno S, Nakamura M, Ohomagari Y, et al (1998) Regulation of tissue-type plasminogen activator (t-PA) and type-1 plasminogen activator inhibitor (PAI-1) gene expression in rat hepatocytes in primary culture. J Biochem 123:806–812

    PubMed  CAS  Google Scholar 

  44. Heaton JH, Gelehrter TD (1990) Cyclic nucleotide regulation of plasminogen activator and plasminogen activator inhibitor messenger RNAs in rat hepatoma cells. Mol Endocrinol 4:171–178

    Article  PubMed  CAS  Google Scholar 

  45. Imagawa S, Fujii S, Dong J, et al (2006) Hepatocyte growth factor regulates E box-dependent plasminogen activator inhibitor type 1 gene expression in HepG2 liver cell. Arterioscler Thromb Vasc Biol 26:2407–2413

    Article  PubMed  CAS  Google Scholar 

  46. Uno S, Nakamura M, Seki T, et al (1997) Induction of tissue-type plasminogen activator (t-PA) and type-1 plasminogen activator inhibitor (PAI-1) a early growth responses in rat hepatocytes in primary culture. Biosci Biotechol Biochem 9:123–128

    Google Scholar 

  47. Mueller L, Broering DC, Meyer J, et al (2002) The induction of the immediate-earlygene Egr-1, PAI-1 and PRL-1 during liver regeneration in surgical models is related to increased portal flow. J Hepatol 37:606–612

    Article  PubMed  CAS  Google Scholar 

  48. Nomura K, Miyagawa S, Ayukawa K, et al (2002) Inhibition of urokinase-type plasminogen activator delays expression of c-jun, activated transforming growth factor b1, and matrix metalloproteinase 2 during post-hepatectomy liver regeneration in mice. J Hepatol 36:637–644

    Article  PubMed  CAS  Google Scholar 

  49. Seki T, Healy AM, Fletcher DS, et al (1999) IL-1b mediates induction of hepatic type 1 plasminogen activator inhibitor in response to local tissue injury. Am J Physiol 277: G801–G809

    PubMed  CAS  Google Scholar 

  50. Thornton AJ, Buruzdzinski CJ, Raper SE, et al (1994) Plasminogen activator inhibitor-1 is an immediate early response gene in regenerating rat liver. Cancer Res 54:1337–1343

    PubMed  CAS  Google Scholar 

  51. Yazigi NA, Carrick TL, Bucuvalas JC, et al (1997) Expansion of transplanted hepatocytes during liver regeneration. Transplantation 64:816–820

    Article  PubMed  CAS  Google Scholar 

  52. Okada K, Ueshima S, Imano M, et al (2004) The regulation of liver regeneration by the plasmin/α2-antiplasmin system. J Hepatol 40: 110–116

    Article  PubMed  CAS  Google Scholar 

  53. Bezerra JA, Bugge TH, Melin-Aldana H, et al (1999) Plasminogen deficiency leads to impaired remodeling after a toxic injury to the liver. Proc Natl Acad Sci USA 96:15143–15148

    Article  PubMed  CAS  Google Scholar 

  54. Bezerra JA, Currier AR, Melin-Aldana H, et al (2001) Plasminogen activators direct reorganization of the liver lobule after acute injury. Am J Pathol 158:921–929

    PubMed  CAS  Google Scholar 

  55. Pohl JF, Melin-Aldana H, Sabla G (2001) Plasminogen deficiency leads to impaired lobular reorganization and matrix accumulation after chronic liver injury. Am J Pathol 159:2179–2186

    PubMed  CAS  Google Scholar 

  56. Ng VL, Sabla GE, Melin-Aldana H (2001) Plasminogen deficiency results in poor clearance of non-fibrin matrix and persistent activation of hepatic stellate cells after an acute injury. J Hepatol 35:781–789

    Article  PubMed  CAS  Google Scholar 

  57. Shanmukhappa K, Sabla GE, Degen JL, et al (2006) Urokinase-type plasminogen activator supports liver repair independent of its cellular receptor. BMC Gastroenterol 6:1–9

    Article  CAS  Google Scholar 

  58. Kawao N, Okada K, Kawata S, et al (2007) Plasmin decreases the BM3-only protein BimEL via the ERK1/2 signaling pathway in hepatocytes. Biochim Biophys Acta 1773:718–727

    Article  PubMed  CAS  Google Scholar 

  59. Ogasawara J, Watanabe-Fukunaga R, Adachi M, et al (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364:806–809

    Article  PubMed  CAS  Google Scholar 

  60. Ito N, Yonehara S, Ishii A, at al (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66:233–243

    Article  Google Scholar 

  61. Watanabe-Fukunaga R, Brannan CI, Ito N, et al (1992) The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J Immunol 148:1274–1279

    PubMed  CAS  Google Scholar 

  62. Tanaka M, Okada K, Ueshima S, et al (2001) Impaired liver regeneration after partial hepatectomy in plasminogen deficient mice. Fibrinolysis Proteolysis 15:2–8

    Article  Google Scholar 

  63. Roselli HT, Su M, Washington K, et al (1998) Liver regeneration is transiently impaired in urokinase-deficient mice. Am J Physiol 275:G1472–G1479

    PubMed  CAS  Google Scholar 

  64. Drixler TA, Vogten JM, Gebbink MFBG, et al (2003) Plasminogen mediates liver regeneration and angiogenesis after experimental partial hepatectomy. Br J Surg 90:1384–1390

    Article  PubMed  CAS  Google Scholar 

  65. Bergheim I, Guo L, Davis MA, et al (2006) Metformin prevents alcohol-induced liver injury in the mouse: critical role of plasminogen activator inhibitor-1. Gastoroentrology 130:2099–2112

    Article  CAS  Google Scholar 

  66. Harrison SA, Diehl AM (2002) Fat and the liver—a molecular overview. Semin Gastrointest Dis 13:3–16

    PubMed  Google Scholar 

  67. Wang H, Vohra BPS, Zhang Y, et al (2005) Transcriptional profiling after bile duct ligation indentifies PAI-1 as a contributor to cholestatic injury in mice. Hepatology 42:1099–1108

    Article  PubMed  CAS  Google Scholar 

  68. Wang H, Zhang Y, Heuckeroth RO (2007) Tissue-type plasminogen activator deficiency exacerbates cholestatic liver injury in mice. Hepatology 45:1527–1537

    Article  PubMed  CAS  Google Scholar 

  69. Miyoshi H, Rust C, Roberts PJ, et al (1999) Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas. Gastroenterology 117:669–677

    Article  PubMed  CAS  Google Scholar 

  70. Salgado S, Garcia J, Vera J, et al (2000) Liver cirrhosis is reverted by urokinase-type plasminogen activator gene therapy. Mol Ther 2:545–551

    Article  PubMed  CAS  Google Scholar 

  71. Bueno M, Salgado S, Beas-Zarate C, et al (2006) Urokinase-type plasminogen activator gene therapy in liver cirrhosis is mediated by collagens gene expression down-regulation and up-regulation of MMPs, HGF and VEGF. J Gene Med 8:1291–1299

    Article  PubMed  CAS  Google Scholar 

  72. Tateno C, Yoshizane Y, Saito N, et al (2004) Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol 165:901–912

    PubMed  CAS  Google Scholar 

  73. Katoh M, Sawada T, Soeno Y, et al (2007) In vivo drug metabolism model for human cytochrome P450 enzyme using chimeric mice with humanized liver. Assoc J Pharm Sci 96:428–437

    Article  CAS  Google Scholar 

  74. Currier AR, Sabla G, Locaputo S, et al (2003) Plasminogen directs the pleiotropic effects of uPA in liver injury and repair. Am J Physiol Gastrointest Liver Physiol 284: G508–G515

    PubMed  CAS  Google Scholar 

  75. Shanmukhappa K, Mourya R, Sabla GE, et al (2005) Hepatic to pancreatic switch defines a role for hemostatic factors in cellular plasticity in mice. Proc Natl Acad Sci U S A 102:10182–10187

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Okada, K., Ueshima, S., Matsuo, O. (2008). Role of Fibrinolysis in Hepatic Regeneration. In: Tanaka, K., Davie, E.W., Ikeda, Y., Iwanaga, S., Saito, H., Sueishi, K. (eds) Recent Advances in Thrombosis and Hemostasis 2008. Springer, Tokyo. https://doi.org/10.1007/978-4-431-78847-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-78847-8_24

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-78846-1

  • Online ISBN: 978-4-431-78847-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics