Skip to main content

New Aspects of Antiinflammatory Activity of Antithrombin: Molecular Mechanism(s) and Therapeutic Implications

  • Chapter
Recent Advances in Thrombosis and Hemostasis 2008
  • 1347 Accesses

Abstract

Antithrombin (AT), an important natural anticoagulant, has been shown to reduce various organ failures as well as coagulation abnormalities in animal sepsis models and in patients with severe sepsis. Proinflammatory cytokines, such as tumor necrosis factor (TNF), play critical roles in the development of the multiple organ failure including disseminated intravascular coagulation by inducing endothelial cell injury through neutrophil activation during sepsis. AT increases the endothelial production of prostacyclin, a potent inhibitor of TNF production, thereby attenuating inflammatory responses in experimental animals given endotoxin and in those subjected to organ ischemia/reperfusion. AT increases the endothelial production of prostacyclin via promotion of calcitonin gene-related peptide (CGRP) release from sensory neurons. CGRP has been shown to increase the production of insulin-like growth factor-I (IGF-I), a potent antiapoptotic factor, in various organs in mice. AT increases IGF-I production via enhancing sensory neuron activation, thereby preventing reperfusion-induced hepatic apoptosis in mice. Because IGF-I has various important biological activities, such as promoting differentiation of various cell types and an anabolic effect in addition to potent antiapoptotic activity, AT might exert novel biological activities other than anticoagulant activities by promoting IGF-I production. These functional properties of AT might explain at least in part its therapeutic efficacy in patients with severe sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ishiguro K, Kojima T, Kadomatsu K, et al (2000) Complete antithrombin deficiency in mice results in embryonic lethality. J Clin Invest 106:873–878

    Article  PubMed  CAS  Google Scholar 

  2. Hirsh J, Piovella F, Pini M (1989) Congenital antithrombin III deficiency: incidence and clinical features. Am J Med 87:34S–38S

    Article  PubMed  CAS  Google Scholar 

  3. Okajima K (2001) Regulation of inflammatory responses by natural anticoagulants. Immunol Rev 184:258–274

    Article  PubMed  CAS  Google Scholar 

  4. Okajima K, Harada N, Kushimoto S, et al (2002) Role of microthrombus formation in the development of ischemia/reperfusion-induced liver injury in rats. Thromb Haemost 88:473–480

    PubMed  CAS  Google Scholar 

  5. Okajima K, Harada N, Uchiba M (2003) Microthrombus formation enhances tumor necrosis factor-alpha production in the development of ischemia/reperfusion-induced liver injury in rats. J Thromb Haemost 1:1316–1317

    Article  PubMed  CAS  Google Scholar 

  6. Isobe H, Okajima K, Uchiba M, et al (2002) Antithrombin prevents endotoxin-induced hypotension by inhibiting the induction of nitric oxide synthase in rats. Blood 99:1638–1645

    Article  PubMed  CAS  Google Scholar 

  7. Keller GA, West MA, Cerra FB, et al (1985) Macrophage-mediated modulation of hepatic function in multiple-system failure. J Surg Res 39:555–563

    Article  PubMed  CAS  Google Scholar 

  8. Mizutani A, Okajima K, Uchiba M, et al (2003) Antithrombin reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation through promotion of prostacyclin production. Blood 101:3029–3036

    Article  PubMed  CAS  Google Scholar 

  9. Harada N, Okajima K, Uchiba M, et al (2003) Contribution of capsaicin-sensitive sensory neurons to stress-induced increases in gastric tissue levels of prostaglandins in rats. Am J Physiol Gastrointest Liver Physiol 285:G1214–G1224

    PubMed  CAS  Google Scholar 

  10. Hogestatt ED, Zygmunt PM (2002) Cardiovascular pharmacology of anandamide. Prostaglandins Leukot Essent Fatty Acids 66:343–351

    Article  PubMed  CAS  Google Scholar 

  11. Harada N, Okajima K, Yuksel M, et al (2005) Contribution of capsaicin-sensitive sensory neurons to antithrombin-induced reduction of ischemia/reperfusion-induced liver injury in rats. Thromb Haemost 93:48–56

    PubMed  CAS  Google Scholar 

  12. De Petrocellis L, Harrison S, Bisogno T, et al (2001) The vanilloid receptor (VR1)-mediated effects of anandamide are potently enhanced by the cAMP-dependent protein kinase. J Neurochem 77:1660–1663

    Article  PubMed  Google Scholar 

  13. Uchiba M, Okajima K, Kaun C, et al (2004) Inhibition of the endothelial cell activation by antithrombin in vitro. Thromb Haemost 92:1420–1427

    PubMed  CAS  Google Scholar 

  14. Weksler BB, Ley CW, Jaffe EA (1978) Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A 23187. J Clin Invest 62:923–930

    Article  PubMed  CAS  Google Scholar 

  15. Drouet L, Bal Dit Sollier C, Ruton S, et al (1990) Role of serotonin in arteriolar thrombosis and secondary vasospasm. J Cardiovasc Pharmacol 16(Suppl 3):S49–S53

    PubMed  CAS  Google Scholar 

  16. Eisenhut T, Sinha B, Grottrup-Wolfers E, et al (1993) Prostacyclin analogs suppress the synthesis of tumor necrosis factor-alpha in LPS-stimulated human peripheral blood mononuclear cells. Immunopharmacology 26:259–264

    Article  PubMed  CAS  Google Scholar 

  17. Kainoh M, Imai R, Umetsu T, et al (1990) Prostacyclin and beraprost sodium as suppressors of activated rat polymorphonuclear leukocytes. Biochem Pharmacol 39:477–484

    Article  PubMed  CAS  Google Scholar 

  18. Van Nieuw Amerongen GP, van Hinsbergh VW (2002) Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vasc Pharmacol 39:257–272

    Article  CAS  Google Scholar 

  19. Walenga JM, Petitou M, Lormeau JC, et al (1987) Antithrombotic activity of a synthetic heparin pentasaccharide in a rabbit stasis thrombosis model using different thrombogenic challenges. Thromb Res 46:187–198

    Article  PubMed  CAS  Google Scholar 

  20. Uchiba M, Okajima K, Murakami K, et al (1996) Attenuation of endotoxin-induced pulmonary vascular injury by antithrombin III. Am J Physiol 270:L921–L930

    PubMed  CAS  Google Scholar 

  21. Harada N, Okajima K, Kushimoto S, et al (1999) Antithrombin reduces ischemia/reperfusion injury of rat liver by increasing the hepatic level of prostacyclin. Blood 93:157–164

    PubMed  CAS  Google Scholar 

  22. Isobe H, Okajima K, Liu W, et al (1999) Antithrombin prevents stress-induced gastric mucosal injury by increasing the gastric prostacyclin level in rats. J Lab Clin Med 133:557–565

    Article  PubMed  CAS  Google Scholar 

  23. Svensson LG, Crawford ES, Hess KR, et al (1993) Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg 17:357–368; discussion 368–370

    Article  PubMed  CAS  Google Scholar 

  24. Hirose K, Okajima K, Uchiba M, et al (2004) Antithrombin reduces the ischemia/reperfusion-induced spinal cord injury in rats by attenuating inflammatory responses. Thromb Haemost 91:162–170

    PubMed  CAS  Google Scholar 

  25. Daughaday WH, Rotwein P (1989) Insulin-like growth factors I and II: peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev 10:68–91

    Article  PubMed  CAS  Google Scholar 

  26. Carroll PV (2001) Treatment with growth hormone and insulin-like growth factor-I in critical illness. Best Pract Res Clin Endocrinol Metab 15:435–451

    Article  PubMed  CAS  Google Scholar 

  27. Daemen MA, van’ t Veer C, Denecker G, et al (1999) Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest 104:541–549

    Article  PubMed  CAS  Google Scholar 

  28. Jones J, Clemmons D (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34

    Article  PubMed  CAS  Google Scholar 

  29. Vignery A, McCarthy TL (1996) The neuropeptide calcitonin gene-related peptide stimulates insulin-like growth factor I production by primary fetal rat osteoblasts. Bone 18:331–335

    Article  PubMed  CAS  Google Scholar 

  30. Harada N, Okajima K, Uchiba M, et al (2006) Antithrombin reduces reperfusion-induced liver injury in mice by enhancing sensory neuron activation. Thromb Haemost 95:788–795

    PubMed  CAS  Google Scholar 

  31. Vincent AM, Feldman EL (2002) Control of cell survival by IGF signaling pathways. Growth Horm IGF Res 12:193–197

    Article  PubMed  CAS  Google Scholar 

  32. Harada N, Okajima K, Kurihara H, et al (2007) Stimulation of sensory neurons by capsaicin increases tissue levels of IGF-I, thereby reducing reperfusion-induced apoptosis in mice. Neuropharmacology 52:1303–1311

    Article  PubMed  CAS  Google Scholar 

  33. Harada N, Okajima K, Kurihara H, et al (In press) Antithrombin prevents reperfusion-induced hepatic apoptosis by enhancing insulin-like growth factor-I production in mice. Crit Care Med

    Google Scholar 

  34. Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, et al (1997) Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med 186:1831–1841

    Article  PubMed  CAS  Google Scholar 

  35. Endres M, Namura S, Shimizu-Sasamata M, et al (1998) Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cereb Blood Flow Metab 18:238–247

    Article  PubMed  CAS  Google Scholar 

  36. Hotchkiss RS, Chang KC, Swanson PE, et al (2000) Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol 1:496–501

    Article  PubMed  CAS  Google Scholar 

  37. Jimenez Del Rio M, Velez-Pardo C (2006) Insulin-like growth factor-1 prevents Abeta[25–35]/(H2O2)-induced apoptosis in lymphocytes by reciprocal NF-kappaB activation and p53 inhibition via PI3K-dependent pathway. Growth Factors 24:67–78

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Harada, N., Okajima, K. (2008). New Aspects of Antiinflammatory Activity of Antithrombin: Molecular Mechanism(s) and Therapeutic Implications. In: Tanaka, K., Davie, E.W., Ikeda, Y., Iwanaga, S., Saito, H., Sueishi, K. (eds) Recent Advances in Thrombosis and Hemostasis 2008. Springer, Tokyo. https://doi.org/10.1007/978-4-431-78847-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-78847-8_14

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-78846-1

  • Online ISBN: 978-4-431-78847-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics