Skip to main content

High-Mobility Group Box 1: Missing Link Between Thrombosis and Inflammation?

  • Chapter
Recent Advances in Thrombosis and Hemostasis 2008
  • 1346 Accesses

Abstract

High-mobility group box 1 protein (HMGB1) is an abundant nuclear protein with a dual function. Inside the cell, HMGB1 binds to DNA and modulates a variety of intranuclear processes, including transcription. Outside the cell, HMGB1 acts as a signal of tissue damage and can promote inflammation, immune responses, and tissue regeneration. During sepsis and/or disseminated intravascular coagulation, however, massive accumulation of HMGB1 in the systemic circulation can cause multiple organ failure and a subsequent lethal outcome. HMGB1 in the systemic circulation is recognized as a lethal mediator of sepsis and a promising therapeutic target for sepsis. Thrombomodulin (TM), a natural anticoagulant glycoprotein expressed on the surface of endothelial cells, plays an important role in sequestering HMGB1. TM may prevent HMGB1 from reaching remote organs, thereby restricting the range of HMGB1 action to the site of injury. In this chapter, we review recent progress made in defining the physiological and pathological roles of HMGB1 and therapeutic strategies aimed at blocking HMGB1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heath WR, Carbone FR (2003) Immunology: dangerous liaisons. Nature 425:460–461

    Article  PubMed  CAS  Google Scholar 

  2. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5

    Article  PubMed  CAS  Google Scholar 

  3. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp Quant Biol 54 (Pt 1):1–13

    PubMed  CAS  Google Scholar 

  4. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  5. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  6. Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44

    Article  PubMed  CAS  Google Scholar 

  7. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    Article  PubMed  CAS  Google Scholar 

  8. Kannemeier C, Shibamiya A, Nakazawa F, et al (2007) Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A

    Google Scholar 

  9. Harris HE, Raucci A: Alarmin(g) news about danger (2006) workshop on innate danger signals and HMGB1. EMBO Rep 7:774–778

    PubMed  CAS  Google Scholar 

  10. Erlandsson Harris H, Andersson U (2004) Mini-review: the nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol 34:1503–1512

    Article  PubMed  CAS  Google Scholar 

  11. Falciola L, Spada F, Calogero S, et al (1997) High mobility group 1 protein is not stably associated with the chromosomes of somatic cells. J Cell Biol 137:19–26

    Article  PubMed  CAS  Google Scholar 

  12. Agresti A, Lupo R, Bianchi ME, et al (2003) HMGB1 interacts differentially with members of the Rel family of transcription factors. Biochem Biophys Res Commun 302:421–426

    Article  PubMed  CAS  Google Scholar 

  13. Boonyaratanakornkit V, Melvin V, Prendergast P, et al (1998) High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol Cell Biol 18:4471–4487

    PubMed  CAS  Google Scholar 

  14. Calogero S, Grassi F, Aguzzi A, et al (1999) The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat Genet 22:276–280

    Article  PubMed  CAS  Google Scholar 

  15. Andersson U, Wang H, Palmblad K, et al (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570

    Article  PubMed  CAS  Google Scholar 

  16. Gardella S, Andrei C, Ferrera D, et al (2002) The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 3:995–1001

    Article  PubMed  CAS  Google Scholar 

  17. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  PubMed  CAS  Google Scholar 

  18. Bonaldi T, Talamo F, Scaffidi P, et al (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22:5551–5560

    Article  PubMed  CAS  Google Scholar 

  19. Dumitriu IE, Baruah P, Manfredi AA, et al (2005) HMGB1: guiding immunity from within. Trends Immunol 26:381–387

    Article  PubMed  CAS  Google Scholar 

  20. Hori O, Brett J, Slattery T, et al (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin: mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 270:25752–25761

    Article  PubMed  CAS  Google Scholar 

  21. Taguchi A, Blood DC, del Toro G, et al (2000) Blockade of RAGE-amphoterin signaling suppresses tumour growth and metastases. Nature 405:354–360

    Article  PubMed  CAS  Google Scholar 

  22. Schmidt AM, Yan SD, Yan SF, et al (2001) The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108:949–955

    PubMed  CAS  Google Scholar 

  23. Park JS, Svetkauskaite D, He Q, et al (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377

    Article  PubMed  CAS  Google Scholar 

  24. Park JS, Gamboni-Robertson F, He Q, et al (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol 290:C917–C924

    Article  PubMed  CAS  Google Scholar 

  25. Tian J, Avalos AM, Mao SY, et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496

    Article  PubMed  CAS  Google Scholar 

  26. Chavakis T, Bierhaus A, Al-Fakhri N, et al (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198:1507–1515

    Article  PubMed  CAS  Google Scholar 

  27. Fiuza C, Bustin M, Talwar S, et al (2003) Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101:2652–2660

    Article  PubMed  CAS  Google Scholar 

  28. Orlova VV, Choi EY, Xie C, et al (2007) A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 26:1129–1139

    Article  PubMed  CAS  Google Scholar 

  29. Rouhiainen A, Kuja-Panula J, Wilkman E, et al (2004) Regulation of monocyte migration by amphoterin (HMGB1). Blood 104:1174–1182

    Article  PubMed  CAS  Google Scholar 

  30. Taniguchi N, Kawahara K, Yone K, et al (2003) High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum 48:971–981

    Article  PubMed  CAS  Google Scholar 

  31. Dumitriu IE, Baruah P, Bianchi ME, et al (2005) Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells. Eur J Immunol 35:2184–2190

    Article  PubMed  CAS  Google Scholar 

  32. Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2:116–126

    Article  PubMed  CAS  Google Scholar 

  33. Hunter RL (2002) Overview of vaccine adjuvants: present and future. Vaccine 20(Suppl 3):S7–S12

    Article  PubMed  CAS  Google Scholar 

  34. Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5:1249–1255

    Article  PubMed  CAS  Google Scholar 

  35. Rock KL, Hearn A, Chen CJ, et al (2005) Natural endogenous adjuvants. Springer Semin Immunopathol 26:231–246

    Article  PubMed  Google Scholar 

  36. Srivastava PK, Maki RG (1991) Stress-induced proteins in immune response to cancer. Curr Top Microbiol Immunol 167:109–123

    PubMed  CAS  Google Scholar 

  37. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    Article  PubMed  CAS  Google Scholar 

  38. Rovere-Querini P, Capobianco A, Scaffidi P, et al (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5:825–830

    Article  PubMed  CAS  Google Scholar 

  39. Palumbo R, Sampaolesi M, De Marchis F, et al (2004) Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol 164:441–449

    Article  PubMed  CAS  Google Scholar 

  40. Limana F, Germani A, Zacheo A, et al (2005) Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circ Res 97:e73–e83

    Article  PubMed  CAS  Google Scholar 

  41. Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891

    Article  PubMed  CAS  Google Scholar 

  42. Tracey KJ, Fong Y, Hesse DG, et al (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330:662–664

    Article  PubMed  CAS  Google Scholar 

  43. Ohlsson K, Bjork P, Bergenfeldt M, et al (1900) Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 348:550–552

    Article  Google Scholar 

  44. Reinhart K, Karzai W (2001) Anti-tumor necrosis factor therapy in sepsis: update on clinical trials and lessons learned. Crit Care Med 29:S121–125

    Article  PubMed  CAS  Google Scholar 

  45. Fisher CJ Jr, Dhainaut JF, Opal SM, et al (1994) Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome: results from a randomized, double-blind, placebo-controlled trial; phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA 271:1836–1843

    Article  PubMed  Google Scholar 

  46. Wang H, Bloom O, Zhang M, et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251

    Article  PubMed  CAS  Google Scholar 

  47. Yang H, Ochani M, Li J, et al (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A 101:296–301

    Article  PubMed  CAS  Google Scholar 

  48. Hatada T, Wada H, Nobori T, et al (2005) Plasma concentrations and importance of high mobility group box protein in the prognosis of organ failure in patients with disseminated intravascular coagulation. Thromb Haemost 94:975–979

    PubMed  CAS  Google Scholar 

  49. Wang H, Yang H, Czura CJ, et al (2001) HMGB1 as a late mediator of lethal systemic inflammation. Am J Respir Crit Care Med 164:1768–1773

    PubMed  CAS  Google Scholar 

  50. Wang H, Yang H, Tracey KJ et al (2004) Extracellular role of HMGB1 in inflammation and sepsis. J Intern Med 255:320–331

    Article  PubMed  CAS  Google Scholar 

  51. Ulloa L, Ochani M, Yang H, et al (2002) Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci U S A 99:12351–12356

    Article  PubMed  CAS  Google Scholar 

  52. Wang H, Liao H, Ochani M, et al (2004) Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 10:1216–1221

    Article  PubMed  CAS  Google Scholar 

  53. Abeyama K, Stern DM, Ito Y, et al (2005) The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest 115:1267–1274

    PubMed  CAS  Google Scholar 

  54. Abraham E, Arcaroli J, Carmody A, et al (2000) HMG-1 as a mediator of acute lung inflammation. J Immunol 165:2950–2954

    PubMed  CAS  Google Scholar 

  55. Kokkola R, Sundberg E, Ulfgren AK, et al (2002) High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis. Arthritis Rheum 46:2598–2603

    Article  PubMed  CAS  Google Scholar 

  56. Kokkola R, Li J, Sundberg E, et al (2003) Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum 48:2052–2058

    Article  PubMed  CAS  Google Scholar 

  57. Jiang W, Pisetsky DS (2007) Mechanisms of disease: the role of high-mobility group protein 1 in the pathogenesis of inflammatory arthritis. Nat Clin Pract Rheumatol 3:52–58

    Article  PubMed  CAS  Google Scholar 

  58. Taira T, Matsuyama W, Mitsuyama H, et al (2007) Increased serum high mobility group box-1 level in Churg-Strauss syndrome. Clin Exp Immunol 148:241–247

    Article  PubMed  CAS  Google Scholar 

  59. Ito T, Kawahara K, Nakamura T, et al (2007) High-mobility group box 1 protein promotes development of microvascular thrombosis in rats. J Thromb Haemost 5:109–116

    Article  PubMed  CAS  Google Scholar 

  60. Russell JA (2006) Management of sepsis. N Engl J Med 355:1699–1713

    Article  PubMed  CAS  Google Scholar 

  61. Sappington PL, Yang R, Yang H, et al (2002) HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology 123:790–802

    Article  PubMed  CAS  Google Scholar 

  62. Sappington PL, Fink ME, Yang R, et al (2003) Ethyl pyruvate provides durable protection against inflammation-induced intestinal epithelial barrier dysfunction. Shock 20:521–528

    Article  PubMed  CAS  Google Scholar 

  63. Saito H, Maruyama I, Shimazaki S, et al (2007) Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost 5:31–41

    Article  PubMed  CAS  Google Scholar 

  64. Weiler H, Isermann BH (2003) Thrombomodulin. J Thromb Haemost 1:1515–1524

    Article  PubMed  CAS  Google Scholar 

  65. Esmon CT (2005) The interactions between inflammation and coagulation. Br J Haematol 131:417–430

    Article  PubMed  CAS  Google Scholar 

  66. Riewald M, Petrovan RJ, Donner A, et al (2002) Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296:1880–1882

    Article  PubMed  CAS  Google Scholar 

  67. Bernard GR, Vincent JL, Laterre PF, et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709

    Article  PubMed  CAS  Google Scholar 

  68. Conway EM, Van de Wouwer M, Pollefeyt S, et al (2002) The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med 196:565–577

    Article  PubMed  CAS  Google Scholar 

  69. Esmon C (2005) Do-all receptor takes on coagulation, inflammation. Nat Med 11:475–477

    Article  PubMed  CAS  Google Scholar 

  70. Levi M, Ten Cate H (1999) Disseminated intravascular coagulation. N Engl J Med 341:586–592

    Article  PubMed  CAS  Google Scholar 

  71. Faust SN, Levin M, Harrison OB, et al (2001) Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med 345:408–416

    Article  PubMed  CAS  Google Scholar 

  72. Brunn GJ, Platt JL (2006) The etiology of sepsis: turned inside out. Trends Mol Med 12:10–16

    Article  PubMed  CAS  Google Scholar 

  73. Sansonetti PJ (2006) The innate signaling of dangers and the dangers of innate signaling. Nat Immunol 7:1237–1242

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Ito, T., Kawahara, Ki., Hashiguchi, T., Maruyama, I. (2008). High-Mobility Group Box 1: Missing Link Between Thrombosis and Inflammation?. In: Tanaka, K., Davie, E.W., Ikeda, Y., Iwanaga, S., Saito, H., Sueishi, K. (eds) Recent Advances in Thrombosis and Hemostasis 2008. Springer, Tokyo. https://doi.org/10.1007/978-4-431-78847-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-78847-8_11

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-78846-1

  • Online ISBN: 978-4-431-78847-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics